1. 대칭적인 맥스웰 방정식
2. 맥스웰 방정식의 쌍대성
[확인] 본 페이지는 exp(-iωt) 시간 약속을 사용하고 있습니다.
[그림 1] 금속 위에 있는 전하(출처: wikipedia.org)
[그림 1]처럼 금속 위에 전하(electric charge)가 있는 문제는 풀기가 쉽지는 않다. 쉽게 풀기 위해 금속 너머에 반대 극성 전하[$-Q$]가 있다고 가정한다. 이 경우 전압(voltage)은 다음으로 표현된다.
(1)
여기서 $z = 0$에 금속이 있다. 단순히 반대 극성 전하가 있다고 가정하기만으로 금속면에서의 접선 성분 전기장(electric field)을 0으로 만들 수 있다. 경계 조건(boundary condition)이 만족되었기 때문에 [그림 1]의 문제가 완전히 풀린다. 여기서 주의할 점이 하나 있다. 사실 금속판의 유일한 경계 조건은 전압이 아니고 전기장이 0임이다. 시간 변화가 없는 정전장에서는 전기장이 0이므로 전압도 등전위이다. 그래서, 식 (1)을 정확히 표현하려면 어떤 상수 전압 $V_0$를 더해줘야 한다. 즉, $V_{\rm tot} = V_+ + V_- + V_0$가 된다. 하지만 전기장 관점에서 보면 상수 전압은 의미가 없기 때문에 단순하게 $V_0=0$이라 두었다.
이런 식으로 가상의 반대 극성 전하를 도입해서 문제를 간단히 푸는 방법을 영상 전하법(映像電荷法, method of image charges)이라 한다. 영상 전하법을 체계적으로 제시한 연구자는 제임스 진스James Jeans(1877–1946)이다[1]. 진스는 양자 역학(quantum mechanics)의 출발점을 제시한 레일리–진스 법칙(Rayleigh–Jeans law)도 유도했다. 전하가 흐르면 전류(electric current)가 되기 때문에 완전 전기 도체(Perfect Electric Conductor, PEC)가 있는 경우 전류에 대한 영상법(method of images)도 [그림 2]처럼 구성할 수 있다. 다만 시간 변화가 있는[$\partial I / \partial t \ne 0$] 교류 전류의 경우만 [그림 2]와 같은 전류 영상법이 성립한다.[교류 전류가 시변 자기장을 만들고, 이 자기장 변화를 없애는 방향으로 금속면에 전자기 유도가 생긴다고 생각할 수 있다.] 직류에서는 전기장과 자기장이 완전히 분리되기 때문에, 직류 전류는 완전 전기 도체에 어떠한 영상 전류도 만들지 않는다.
[그림 2] 완전 전기 도체에 대한 전류/자류 영상법
영상 전류가 생기는 방향은 전하의 움직임을 생각하면 쉽게 이해된다. 접선 방향(transverse direction) 전류는 영상 전하가 반대 극성으로 생기고 영상 전하가 전류와 동일한 방향으로 흐르기 때문에 영상 전류는 마치 거꾸로 흐르는 것처럼 느껴진다. 법선 방향(normal direction) 전류 경우도 영상 전하는 반대 극성으로 생기지만 영상 전하의 움직임은 원래 전하와는 반대 방향으로 움직인다.[∵ 식 (1)에서 보는 것처럼 원래 전하와 동일한 거리를 떨어져서 영상 전하가 생긴다. 그래서, 법선 방향 흐름 관점에서는 원래 전하와 영상 전하는 서로 멀어진다.] 그래서, 전류는 동일한 방향으로 흐르는 것처럼 보인다. [그림 2]의 결과는 식 (2)의 대칭적인 맥스웰 방정식(symmetric Maxwell's equations)으로도 설명된다.
식 (2)에 보는 바와 같이 전기장(electric field)과 자기 벡터 포텐셜(magnetic vector potential)은 같은 방향 성분이 있다. 또한 자유 공간에서는 전류 밀도(electric current density)와 자기 벡터 포텐셜이 같은 방향이므로 전기장과 전류 밀도는 같은 방향 성분을 가지고 있다. 즉, [그림 2]에 있는 접선 방향 전류 밀도는 전류와 동일한 방향으로 전기장을 발생시키기 때문에 PEC 평면[식 (1)에서 $z = 0$]에서 전기장을 0으로 만들기 위해서는 영상 전류가 반대 방향으로 생겨야 한다. 법선 방향 전류 밀도도 마찬가지다. 이 전류와 동일한 방향으로 전기장이 생기며 PEC 평면에서는 법선 방향 전기장이 최대가 되어야 하므로 영상 전류는 동일 방향으로 생겨야 한다. PEC 평면에서 전기장이 최대가 되어야 하는 이유는 다음 식을 보면 분명하다.
(3)
식 (3)의 결과에 의해 PEC 평면 근처에서는 법선 방향 전기장의 $z$방향 미분이 0이다. 즉, 이 지점에서 전기장의 최대나 최소가 생긴다는 의미이다. 우리에게는 최대인지 최소인지는 중요하지 않으므로[∵ 최소인 경우 전기장의 방향을 반대로 바꾸면 최대가 된다.] 전기장이 최대가 된다고 생각하면 된다. 자하의 흐름인 자류(magnetic current)에 대한 설명은 쉽지 않다. 자하(magnetic charge)가 개념 이해를 방해하기 때문이다. 그래서 [그림 3]의 회전하는 미소 전류(infinitesimal current)가 만드는 자기 쌍극자(magnetic dipole)를 흔히 자하로 생각한다.
[그림 3] 회전하는 미소 전류가 만드는 등가적인 자하
[그림 4] 미소 전류와 자하의 관계(출처: wikipedia.org)
[그림 3]과 [그림 4]의 회전하는 미소 전류를 자하로 생각하면 [그림 2]의 자류에 대한 영상 자류가 쉽게 설명된다. 즉, [그림 2]의 자류[파란색 화살표] 대신에 [그림 5]처럼 미소 전류의 움직임을 생각하면 된다.
[그림 5] 회전하는 미소 전류로 표현한 자류
법선 방향 자류는 [그림 3]의 회전하는 미소 전류가 PEC와 평행하게 있다고 볼 수 있다. 그러면 이 미소 전류의 영상 전류는 반대 방향으로 생기므로 자류 관점에서도 반대 방향으로 영상 자류가 생긴다. 접선 방향 자류는 회전하는 미소 전류가 PEC에 수직이라고 볼 수 있다. 즉, 법선 방향 전류의 영상 전류는 동일 방향이므로 영상 자류도 동일 방향으로 생긴다.
[그림 6] 완전 자기 도체에 대한 영상법
완전 전기 도체가 이해되면 [그림 6]의 완전 자기 도체(Perfect Magnetic Conductor, PMC)에 대한 영상법은 매우 쉽다. 바로 맥스웰 방정식의 쌍대성(雙對性, duality of Maxwell's equations)이 있기 때문이다. [그림 2]에서 전류를 자류로, 자류를 전류로 바꾸면 [그림 6]이 증명된다.
[참고문헌]
[1] J. H. Jeans, The Mathematical Theory of Electricity and Magnetism, 3rd ed., Cambridge University Press, 1915.
[다음 읽을거리]
1. 표면 등가의 원리