2021년 11월 19일 금요일

구의 방정식(Equation of a Sphere)

[경고] 아래 글을 읽지 않고 "구의 방정식"을 보면 바보로 느껴질 수 있습니다.


[그림 1] 3차원 공간에 그린 구(출처: wikipedia.org)

2차원에서 가장 완벽한 도형이 (圓, circle)이라면, 원에 대응하는 3차원 도형은 (球, sphere)이다. 구는 중심에서 반지름이 일정한 점의 3차원 자취이다. 구의 정의에 따라 구의 방정식은 다음과 같이 기술한다.

                  (1)

여기서 구의 중심은 $(a, b, c)$, 반지름은 $r$이다. 원의 매개변수 표현식을 참고해서 구의 매개변수 표현식도 쉽게 유도할 수 있다. 먼저 3차원이 아닌 2차원으로 한정해서 $(x-a)^2 + (y-b)^2$ = $\rho^2$이라 둔다. 그러면 반지름 $r$에 대해 다음 관계가 성립해야 한다.

                  (2)

여기서 $\sin^2 \theta + \cos^2 \theta$ = $1$, $\rho$는 $x, y$에 대한 2차원 반지름이다. 2차원 반지름 $\rho$는 음수가 아니므로, 새로운 각도 $\theta$의 변화 범위는 $0 \le \theta \le \pi$가 되어야 한다. 식 (2)에 따라 점 $(x, y, z)$를 매개변수 $(r, \theta ,\phi)$로 표현할 수 있다.

                  (3)

새로운 매개변수 $(r, \theta ,\phi)$는 구 좌표계(spherical coordinate system)의 좌표 성분에 쓰인다. 2차원 각도 $\phi$는 평면에서의 방향[예를 들어, 동쪽 혹은 서쪽]을 가리키는 방위각(方位角, azimuth)이며, 3차원 각도 $\theta$는 극고도각(極高度角, polar angle)이라 부른다. 흔히 쓰는 고도각(高度角, elevation angle)은 적도[= $0^\circ$]에서 시작해 북극[= $90^\circ$]으로 올라가지만, 극고도각은 북극[$\theta$ = $0$]에서 출발해 적도[$\theta$ = $\pi/2$]를 거쳐 남극[$\theta$ = $\pi$]으로 간다. 그래서 고도각과 극고도각은 꼭 구별해서 써야 한다. 또한 극고도각 $\theta$의 변화 방향은 방위각 $\phi$의 변화에 직교하도록 정한다. 서로 직교하는 좌표 성분으로 구성한 편리한 좌표계를 직교 좌표계(直交座標系, orthogonal coordinate system)라고 부른다. 그래서 $(r, \theta ,\phi)$로 만든 직교 좌표계는 구의 속성을 표현하고 있어서 당연히 구 좌표계가 된다.
반지름 $r$을 고정하고 각도 $\theta, \phi$를 바꾸면서 구의 표면적 $S$를 계산한다. 각도 $\theta, \phi$에 대응하는 호의 길이(arc length)를 각각 $r d \theta, \rho d\phi$라 둔다. 그 다음에 서로 직교하는 두 호의 길이를 적분해서 구의 표면적 $S$를 유도한다.

                  (4)

구의 표면적 $S$를 반지름 $r$에 대해 양파 껍질 적분법(onion skin integration)을 적용하면, 그 적분값은 구의 부피 $V$가 된다.

                  (5)

식 (4)와 (5)에 따라 표면적과 부피는 서로 미적분 관계에 있다.

                  (6)

원과 호의 길이로 정의한 라디안(radian)의 개념을 확장해서 3차원 공간에 쓸 수 있는 입체각(立體角, solid angle) $\Omega$를 정의한다. 먼저 식 (4)에 따라 미소 표면적 $dS$를 반지름 제곱으로 나눈 값인 미소 입체각 $d\Omega$를 도입한다.

                  (7)

내적(inner product)을 이용해 임의의 미소 면적 $d \bar a$를 구의 표면으로 정사영하면, 입체각으로 임의의 3차원 각도를 측정할 수 있다. 즉, 구의 표면을 뚫고 나오는 단위 벡터(unit vector) $\hat r$과 미소 면적 $d \bar a$를 내적해서 임의의 3차원 각도를 재는 입체각 $\Omega$를 새롭게 정의한다.

                  (8)

입체각을 헤아리는 단위는 스테라디안(steradian, sr)이라 부른다. 스테라디안은 입체를 뜻하는 스테레오스(στερεός)와 빛줄기를 말하는 라디우스(radius)의 합성어이다. 식 (7)에 의해 전체 3차원 공간에 대한 입체각은 $4 \pi$ sr이다.

구의 방정식을 이용해서 여러 가지 구의 성질을 다소 쉽게 증명할 수 있다.

[그림 2] 구에 접하는 평면 혹은 접평면(원본 출처: wikipedia.org)

[구의 접평면(tangent plane to a sphere)]
구의 접평면은 항상 구에 수직이다.

[증명]
구의 방정식을 변형해서 구 표면을 $f(x, y, z)$ = $x^2+y^2+z^2 - r^2$ = $0$으로 표현한다. 여기서 구의 중심은 $(x_0, y_0, z_0)$ = $(0, 0, 0)$이다. 접평면의 방정식을 적용해서 구 표면 위의 점 $(x_1, y_1, z_1)$에서 구의 접평면을 구한다.

                  (9)

접평면의 법선 벡터 $(x_1, y_1, z_1)$은 구의 중심에서 구 표면으로 가는 위치 벡터(position vector)이기도 하므로, 구의 접평면은 구에 항상 수직이다.
______________________________

구의 방정식과 접평면을 쓰면, 원을 이용해서 증명한 점과 직선 사이의 거리 관계를 3차원으로 확장할 수 있다.

[점과 평면 사이의 거리(distance from a point to a plane)]
점 $(x_0, y_0, z_0)$에서 직선 $ax+by+cz+d = 0$ 사이의 거리 $D$는 다음과 같다.

                              (10)

여기서 점과 평면 사이의 거리는 최단 거리 혹은 수직인 거리로 정한다.

[증명]
[그림 2]처럼 점 $(x_0, y_0, z_0)$를 중심으로 하는 구를 그려서 평면 $ax+by+cz+d$ = $0$에 접하게 한다. 그러면 식 (9)에 있는 구의 접평면 방정식은 다음과 같아진다.

                              (11)

평면의 방정식을 바꾸어서 $a(x-x_1) + b(y-y_1) + c(z-z_1)$ = $0$으로 쓰면, 평면의 법선 벡터 $\bar n$은 $(a, b, c)$가 된다. 다음 단계로 구의 중심에서 평면의 접점으로 가는 벡터 $\bar v$ = $(x_1, y_1, z_1) - (x_0, y_0, z_0)$는 $\bar n$에 평행해서 $\bar v$ = $-k \bar n$로 둔다. 여기서 $\bar n, \bar v$의 크기에 따라 스칼라 $k$의 크기는 $|k|$ = $r/\sqrt{a^2 + b^2 + c^2}$이다. 최종적으로 구의 반지름 $r$ 혹은 점과 평면 사이의 거리 $D$는 다음처럼 표현된다.

                              (12)
______________________________

식 (10)을 위한 증명은 초구(超球, hypersphere)에 접하는 초평면(超平面, hyperplane)까지 확장되어 다차원에 있는 점과 초평면 사이의 거리까지 유도할 수 있다.

[다음 읽을거리]

댓글 없음 :

댓글 쓰기

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.