2021년 11월 20일 토요일

평면의 방정식(Equation of Plane)

[경고] 아래 글을 읽지 않고 "평면의 방정식"을 보면 바보로 느껴질 수 있습니다.


평평한 면을 나타내는 평면(平面, plane)은 기본 개념이 아주 쉽지만 수학 공식으로 평면을 표현하려면 어려움이 크다. 3차원 공간의 평면을 공식화하는 방법은 많이 있지만, 고급 개념인 벡터(vector)를 쓰면 평면의 방정식이 바로 얻어진다.

[그림 1] 3차원 공간 상의 평면 모습(출처: wikipedia.org)

벡터 개념으로 평면의 방정식을 유도하기 위해 [그림 1]과 같은 그림을 상상한다. 평면 상에 존재하는 임의의 점을 $\bar r$ = $(x, y, z)$, 우리가 위치를 알고 있는 평면 상의 고정된 점은 $\bar r_0$ = $(x_0, y_0, z_0)$이라 쓴다. 그러면 $\bar r$과 $\bar r_0$이 만드는 벡터는 평면에 항상 수직인 법선 벡터(normal vector) $\bar n$과의 벡터 내적(inner product)이 항상 0이다.

                  (1)

여기서 $\bar n$ = $(a, b, c)$이다. 결과적으로 식 (1)은 법선 벡터 $\bar n$을 가진 평면을 위한 대수 방정식이 된다.
식 (1)에 제시한 평면의 방정식을 이용해 3차원 곡면의 접평면(接平面, tangent plane)도 정의할 수 있다[1]. 구배(gradient) 연산자를 쓰면, 임의의 곡면 $f(x, y, z)$ = $0$에 대한 접평면의 방정식을 쉽게 유도할 수 있다.

[그림 2] 구에 접하는 평면 혹은 접평면(출처: wikipedia.org)

[접평면의 방정식]
곡면 $f(x, y, z)$ = $0$ 위의 점 $\bar r_0$ = $(x_0, y_0, z_0)$에 접하는 평면의 방정식은 다음과 같다.

                  (2)

[증명]
구배는 스칼라 함수가 최대로 변하는 방향이므로, $\bar \nabla f$는 자동적으로 곡면의 법선 벡터와 평행하게 된다. 따라서 $\bar n$ = $\bar \nabla f$를 식 (1)에 대입해서 정리하면 식 (2)가 바로 얻어진다.
______________________________

만약 곡면을 $z$ = $f(x, y)$로 표현하면, $F(x, y, z)$ = $f(x, y) - z$ = $0$으로 생각해서 식 (2)에 대입한다. 그러면 $z$ = $f(x, y)$의 접평면의 방정식도 얻을 수 있다.

             (3)

여기서 $z_0$ = $f(x_0, y_0)$이다.

[그림 3] 점과 평면 사이의 거리

점과 직선 사이의 거리처럼 점과 평면 사이의 거리를 유도할 때도 벡터 개념이 매우 유리하다.

[점과 평면 사이의 거리(distance from a point to a plane)]
점 $\bar r_0$ = $(x_0, y_0, z_0)$에서 평면 $ax+by+cz+d$ = $0$ 사이의 거리 $D$는 다음과 같다.

                              (4)

여기서 점과 평면 사이의 거리는 최단 거리 혹은 수직인 거리로 정한다.

[증명]
[그림 3]에 있는 평면의 방정식 일반형 $ax+by+cz+d$ = $0$을 바꾸어서 식 (1)과 같은 평면의 방정식 표준형 $a(x-x_1)+b(y-y_1)+c(z-z_1)$ = $0$을 만든다. 여기서 법선 벡터는 $\bar n$ = $(a, b, c)$, $\bar r_1$ = $(x_1, y_1, z_1)$은 평면 위의 점이다. 점과 직선 사이의 거리처럼 벡터 $\bar n$과 $\bar u$ = $\bar r_0 - \bar r_1$ = $(x_0, y_0, z_0) - (x_1, y_1, z_1)$ 사이의 내적을 계산해서 식 (4)를 증명한다.

                              (5)
______________________________

[그림 4] 헤세 표준형을 위한 기하 구조(출처: wikipedia.org)

원점에서 시작하는 법선 벡터 $\bar n$을 가진 [그림 4]는 식 (1)을 바라보는 새 관점을 알려준다. 원점과 평면 사이의 거리를 $D$로 두면, $\bar n$ = $D \hat n$으로 표현 가능하다. 또한 $\bar r_0$는 평면 위의 점이므로 $\bar n$ = $\bar r_0$이 되게 한다. 그러면 식 (1)에 기술한 평면의 방정식은 점과 평면 사이의 거리를 결정하는 공식으로 바뀌게 된다.

                              (6)

여기서 $\bar r_0$ = $(a, b, c)$, $\hat n$ = $(a, b, c) \mathbin{/} \sqrt{a^2 + b^2 + c^2}$, $\bar r$ = $(x, y, z)$이다. 거리 정보를 담고 있는 식 (6)은 제안자 헤세Ludwig Otto Hesse(1811–1874)의 이름을 따서 헤세 표준형(Hesse normal form)이라 부른다. 헤세는 다차원 구배(gradient)를 계산하는 헤세 행렬(Hessian matrix)로도 유명하다. 식 (4)와 같은 방식으로 바꿀 때는 원래 점 $(x_0, y_0, z_0)$를 평행 이동하여 원점으로 보낸다. 이때 평면의 방정식은 $a(x+x_0) + b(y+y_0) + c(z+z_0) + d$ = $0$으로 변형된다. 그러면 식 (6)을 따라 $\hat n \cdot \bar r$ = $(ax+by+cz) / \sqrt{a^2 + b^2 + c^2}$ = $- (ax_0+b y_0 + cz_0 + d) / \sqrt{a^2 + b^2 + c^2}$ = $D$가 손쉽게 얻어진다.
우리가 고려하는 평면은 3차원 공간에 있지만, 식 (1)과 (2)를 보면 3차원보다 큰 다차원 공간의 평면도 가능할 것 같다. 예를 들어, 식 (1)에 따라 $n$차원 공간에 존재하는 평면의 방정식은 다음처럼 쓸 수 있다.

                              (7)

여기서 $\bar n$ = $(a_1, a_2, \cdots, a_n)$, $\bar r$ = $(x_1, x_2, \cdots, x_n)$, $\bar r_0$ = $(b_1, b_2, \cdots, b_n)$이다. 평면을 일반화시킨 기하학적 대상체는 초평면(超平面, hyperplane)이라 부른다. 일반적으로 초평면은 현재 물체가 놓인 $n$차원보다 하나만큼 차원이 작은 $n-1$차원 공간을 뜻한다. 식 (7)에 의하면, 어떤 좌표 성분 하나는 다른 모든 좌표 성분으로 표현되어서 선형 종속(linear independence)이 된다. 따라서 식 (7)은 $n$차원보다 하나 작은 $n-1$차원을 나타내므로 초평면이 된다. 초평면 개념을 식 (4)에 적용할 수 있다. 벡터와 내적을 $n$차원으로 확장해서 $n$차원 공간의 점 $\bar y$ = $(y_1, y_2, \cdots, y_n)$과 초평면 사이의 거리를 다음과 같이 정의할 수 있다.

                              (8)

여기서 $\bar r_0$ = $(x_1, x_2, \cdots, x_n)$은 평면 위에 있다. 식 (8)을 섬세하게 음미하면, 현실에서 만나거나 상상할 수 없는 $n$차원 공간을 기하학적으로 자유롭게 다룰 수 있게 하는 수학적 추상화의 힘을 느낄 수 있다.

[그림 5] 평면에 대한 영상 $\bar r_0'$ = $(x_0', y_0', z_0')$

[평면에 대한 영상(image for a plane)]
점 $\bar r_0$ = $(x_0, y_0, z_0)$이 평면 $ax+by+cz+d$ = $0$에 대해 만드는 영상(image) $\bar r_0'$ = $(x_0', y_0', z_0')$의 공식은 다음과 같다.

                              (9)

여기서 영상 $\bar r_0'$은 평면 기준으로 $\bar r_0$과 같은 거리만큼 떨어지면서도 $\bar r_0$과 반대편에 있는 점, $\bar n$ = $(a, b, c)$, $\hat n$ = $\bar n \mathbin{/} |\bar n|$, $\bar r_1$ = $(x_1, y_1, z_1)$은 평면 위의 임의 점이다.

[증명: 벡터 연산]
[그림 5]에 따라 평면에서 점 $\bar r_0$에 가는 벡터는 $\bar r_0 - \bar r_1$이다. 이 벡터가 가진 성분 중에서 $\hat n$ 방향은 $\hat n \cdot (\bar r_0 - \bar r_1)$이다. 이 값을 $\bar r_0$에서 2배만큼 빼주면, 평면 기준으로 $\bar r_0$에서 반대 방향에 있으면서도 떨어진 거리는 같은 영상이 얻어진다.

[증명: 직선의 방정식]
점 $\bar r_0$과 영상 $\bar r_0'$의 중점은 평면상에 있어서 다음과 같은 방정식을 만족한다.

                  (10)

또한 $\bar r_0' - \bar r_0$은 평면에 수직하며 $\hat n$과 같은 방향이므로, 다음과 같은 직선의 방정식이 성립한다.

                  (11)

식 (10)과 (11)을 연립해서 비례 상수 $k$를 결정한다.

                  (12)

식 (12)를 식 (11)에 넣어서 확정한 영상은 $\bar r_0'$ = $\bar r_0 + k \bar n$으로 나온다. 여기서 $d$ = $-\bar n \cdot \bar r_1$이다.
______________________________

평면에 대한 영상은 빛의 반사를 직선으로 추적할 때에 유용하게 사용된다. 평면을 표현하는 단위 법선 벡터 $\hat n$은 식 (9)에서 제곱 특성을 가져서 $-\hat n$을 써도 문제없다.

[참고문헌]
[1] M. Corral, Tangent Plane to a Surface, Vector Calculus, Schoolcraft College, Jan. 2021.

[다음 읽을거리]

댓글 2개 :

  1. 안녕하세요. 문과인데 잘 보고 있습니다! 답변이 달릴지는 모르겠지만^^; 왜 (4)식에서 분자에 절대값이 들어가는지 알 수 있을까요?

    답글삭제
    답글
    1. 안녕하세요, 익명님 ^^

      거리는 음수가 없어요. 식 (5)를 봐도 항상 양수로 취급해서 계산해요.

      삭제

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.