2021년 11월 20일 토요일

평면의 방정식(Equation of a Plane)

[경고] 아래 글을 읽지 않고 "평면의 방정식"을 보면 바보로 느껴질 수 있습니다.


평평한 면을 나타내는 평면(平面, plane)은 기본 개념이 아주 쉽지만 수학 공식으로 평면을 표현하려면 어려움이 크다. 3차원 공간의 평면을 공식화하는 방법은 많이 있지만, 고급 개념인 벡터(vector)를 쓰면 평면의 방정식이 바로 얻어진다.

[그림 1] 3차원 공간 상의 평면 모습(출처: wikipedia.org)

벡터 개념으로 평면의 방정식을 유도하기 위해 [그림 1]과 같은 그림을 상상한다. 평면 상에 존재하는 임의의 점을 $\bar r$ = $(x, y, z)$, 우리가 위치를 알고 있는 평면 상의 고정된 점은 $\bar r_0$ = $(x_0, y_0, z_0)$이라 쓴다. 그러면 $\bar r$과 $\bar r_0$이 만드는 벡터는 평면에 항상 수직인 법선 벡터(normal vector) $\bar n$과의 벡터 내적(inner product)이 항상 0이다.

                  (1)

여기서 $\bar n$ = $(a, b, c)$이다. 결과적으로 식 (1)은 법선 벡터 $\bar n$을 가진 평면을 위한 대수 방정식이 된다.
식 (1)에 제시한 평면의 방정식을 이용해 3차원 곡면의 접평면(接平面, tangent plane)도 정의할 수 있다[1]. 구배(gradient) 연산자를 쓰면, 임의의 곡면 $f(x, y, z)$ = $0$에 대한 접평면의 방정식을 쉽게 유도할 수 있다.

[그림 2] 구에 접하는 평면 혹은 접평면(출처: wikipedia.org)

[접평면의 방정식]
곡면 $f(x, y, z)$ = $0$ 위의 점 $\bar r_0$ = $(x_0, y_0, z_0)$에 접하는 평면의 방정식은 다음과 같다.

                  (2)

[증명]
구배는 스칼라 함수가 최대로 변하는 방향이므로, $\bar \nabla f$는 자동적으로 곡면의 법선 벡터와 평행하게 된다. 따라서 $\bar n$ = $\bar \nabla f$를 식 (1)에 대입해서 정리하면 식 (2)가 바로 얻어진다.
______________________________

만약 곡면을 $z$ = $f(x, y)$로 표현하면, $F(x, y, z)$ = $f(x, y) - z$ = $0$으로 생각해서 식 (2)에 대입한다. 그러면 $z$ = $f(x, y)$의 접평면의 방정식도 얻을 수 있다.

             (3)

여기서 $z_0$ = $f(x_0, y_0)$이다.

[그림 3] 점과 평면 사이의 거리

점과 직선 사이의 거리처럼 점과 평면 사이의 거리를 유도할 때도 벡터 개념이 매우 유리하다.

[점과 평면 사이의 거리(distance from a point to a plane)]
점 $(x_0, y_0, z_0)$에서 직선 $ax+by+cz+d = 0$ 사이의 거리 $D$는 다음과 같다.

                              (4)

여기서 점과 평면 사이의 거리는 최단 거리 혹은 수직인 거리로 정한다.

[증명]
[그림 3]에 있는 평면의 방정식 일반형 $ax+by+cz+d$ = $0$을 바꾸어서 식 (1)과 같은 평면의 방정식 표준형 $a(x-x_1)+b(y-y_1)+c(z-z_1)$ = $0$을 만든다. 여기서 법선 벡터는 $\bar n$ = $(a, b, c)$, $(x_1, y_1, z_1)$은 평면 위의 점이다. 점과 직선 사이의 거리처럼 벡터 $\bar n$과 $\bar u$ = $(x_0, y_0, z_0) - (x_1, y_1, z_1)$ 사이의 내적을 계산해서 식 (4)를 증명한다.

                              (5)
______________________________

우리가 고려하는 평면은 3차원 공간에 있지만, 식 (1)과 (2)를 보면 3차원보다 큰 다차원 공간의 평면도 가능할 것 같다. 예를 들어, 식 (1)에 따라 $n$차원 공간에 존재하는 평면의 방정식은 다음처럼 쓸 수 있다.

                              (6)

여기서 $\bar n$ = $(a_1, a_2, \cdots, a_n)$, $\bar r$ = $(x_1, x_2, \cdots, x_n)$, $\bar r_0$ = $(b_1, b_2, \cdots, b_n)$이다. 평면을 일반화시킨 기하학적 대상체는 초평면(超平面, hyperplane)이라 부른다. 일반적으로 초평면은 현재 물체가 놓인 $n$차원보다 하나만큼 차원이 작은 $n-1$차원 공간을 뜻한다. 식 (6)에 의하면, 어떤 좌표 성분 하나는 다른 모든 좌표 성분으로 표현되어서 선형 종속(linear independence)이 된다. 따라서 식 (6)은 $n$차원보다 하나 작은 $n-1$차원을 나타내므로 초평면이 된다. 초평면 개념을 식 (4)에 적용할 수 있다. 벡터와 내적을 $n$차원으로 확장해서 $n$차원 공간의 점 $\bar y$ = $(y_1, y_2, \cdots, y_n)$과 초평면 사이의 거리를 다음과 같이 정의할 수 있다.

                              (7)

여기서 $\bar r_0$ = $(x_1, x_2, \cdots, x_n)$은 평면 위에 있다. 식 (7)을 섬세하게 음미하면, 현실에서 만나거나 상상할 수 없는 $n$차원 공간을 기하학적으로 자유롭게 다룰 수 있게 하는 수학적 추상화의 힘을 느낄 수 있다.

[참고문헌]
[1] M. Corral, Tangent Plane to a Surface, Vector Calculus, Schoolcraft College, Jan. 2021.

[다음 읽을거리]

댓글 없음 :

댓글 쓰기

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.