2011년 12월 27일 화요일

영상 전하법(映像電荷法, method of image charges)

[경고] 아래 글을 읽지 않고 "영상 전하법"을 보면 바보로 느껴질 수 있습니다.
1. 대칭적인 맥스웰 방정식
2. 맥스웰 방정식의 쌍대성


[확인] 본 페이지는 exp(-iωt) 시간 약속을 사용하고 있습니다.


[그림 1] 금속 위에 있는 전하(출처: wikipedia.org)

[그림 1]처럼 금속 위에 전하(electric charge)가 있는 문제는 풀기가 쉽지는 않다. 쉽게 푸는 방법은 금속 너머에 반대 극성 전하($-Q$)가 있다고 가정하는 것이다. 이 경우 전압(voltage)은 다음으로 표현된다.

                   (1)

여기서 $z = 0$에 금속이 있다.
단순히 반대 극성 전하가 있다고 가정하는 것만으로 금속면에서의 접선 성분 전기장(electric field)을 0으로 만들 수 있다. 경계 조건(boundary condition)이 만족되었기 때문에 [그림 1]의 문제가 완전히 풀린다. 여기서 주의할 점이 하나 있다. 사실 금속판의 유일한 경계 조건은 전압이 아니고 전기장이 0이라는 것이다. 시간 변화가 없는 정전장에서는 전기장이 0이므로 전압도 등전위이다. 그래서, 식 (1)을 정확히 표현하려면 어떤 상수 전압 $V_0$를 더해줘야 한다. 즉, $V_{\rm tot} = V_+ + V_- + V_0$가 된다. 하지만 전기장 관점에서 보면 상수 전압은 의미가 없기 때문에 단순하게 $V_0=0$이라 두었다.
이런 식으로 가상의 반대 극성 전하를 도입해서 문제를 간단히 푸는 방법을 영상 전하법(映像電荷法, method of image charges)이라 한다. 전하가 흐르면 전류(electric current)가 되기 때문에 완전 전기 도체(PEC: Perfect Electric Conductor)가 있는 경우 전류에 대한 영상법(method of images)도 [그림 2]처럼 구성할 수 있다. 다만 시간 변화가 있는($\partial I / \partial t \ne 0$) 교류 전류의 경우만 [그림 2]와 같은 전류 영상법이 성립한다. (교류 전류가 시변 자기장을 만들고, 이 자기장 변화를 없애는 방향으로 금속면에 전자기 유도가 생긴다고 생각할 수 있다.) 직류에서는 전기장과 자기장이 완전히 분리되기 때문에, 직류 전류는 완전 전기 도체에 어떠한 영상 전류도 만들지 않는다.

[그림 2] 완전 전기 도체에 대한 전류/자류 영상법

영상 전류가 생기는 방향은 전하의 움직임을 생각하면 쉽게 이해된다. 접선 방향(transverse direction) 전류는 영상 전하가 반대 극성으로 생기고 영상 전하가 전류와 동일한 방향으로 흐르기 때문에 영상 전류는 마치 거꾸로 흐르는 것처럼 느껴진다. 법선 방향(normal direction) 전류 경우도 영상 전하는 반대 극성으로 생기지만 영상 전하의 움직임은 원래 전하와는 반대 방향으로 움직인다. (∵ 식 (1)에서 보는 것처럼 원래 전하와 동일한 거리를 떨어져서 영상 전하가 생긴다. 그래서, 법선 방향 흐름 관점에서는 원래 전하와 영상 전하는 서로 멀어진다.) 그래서, 전류는 동일한 방향으로 흐르는 것처럼 보인다. [그림 2]의 결과는 식 (2)의 대칭적인 맥스웰 방정식(symmetric Maxwell's equations)으로도 설명된다.

                          (2)

식 (2)에 보는 바와 같이 전기장(electric field)과 자기 벡터 포텐셜(magnetic vector potential)은 같은 방향 성분이 있다. 또한 자유 공간에서는 전류 밀도(electric current density)와 자기 벡터 포텐셜이 같은 방향이므로 전기장과 전류 밀도는 같은 방향 성분을 가지고 있다. 즉, [그림 2]에 있는 접선 방향 전류 밀도는 전류와 동일한 방향으로 전기장을 발생시키기 때문에 PEC 평면(식 (1)에서 $z = 0$)에서 전기장을 0으로 만들기 위해서는 영상 전류가 반대 방향으로 생겨야 한다. 법선 방향 전류 밀도도 마찬가지다. 이 전류와 동일한 방향으로 전기장이 생기며 PEC 평면에서는 법선 방향 전기장이 최대가 되어야 하므로 영상 전류는 동일 방향으로 생겨야 한다. PEC 평면에서 전기장이 최대가 되어야 하는 이유는 다음 식을 보면 분명하다.

                          (3)

식 (3)의 결과에 의해 PEC 평면 근처에서는 법선 방향 전기장의 $z$방향 미분이 0이다. 즉, 이 지점에서 전기장의 최대나 최소가 생긴다는 의미이다. 우리에게는 최대인지 최소인지는 중요하지 않으므로(∵ 최소인 경우 전기장의 방향을 반대로 바꾸면 최대가 된다.) 전기장이 최대가 된다고 생각하면 된다. 자하의 흐름인 자류(magnetic current)에 대한 설명은 쉽지 않다. 자하(magnetic charge)가 개념 이해를 방해하기 때문이다. 그래서 [그림 3]의 회전하는 미소 전류(infinitesimal current)가 만드는 자기 쌍극자(magnetic dipole)를 흔히 자하로 생각한다.

[그림 3] 회전하는 미소 전류가 만드는 등가적인 자하

 
[그림 4] 미소 전류와 자하의 관계(출처: wikipedia.org)

[그림 3]과 [그림 4]의 회전하는 미소 전류를 자하로 생각하면 [그림 2]의 자류에 대한 영상 자류가 쉽게 설명된다. 즉, [그림 2]의 자류(파란 화살표) 대신에 [그림 5]처럼 미소 전류의 움직임을 생각하면 된다.

[그림 5] 회전하는 미소 전류로 표현한 자류

법선 방향 자류는 [그림 3]의 회전하는 미소 전류가 PEC와 평행하게 있다고 볼 수 있다. 그러면 이 미소 전류의 영상 전류는 반대 방향으로 생기므로 자류 관점에서도 반대 방향으로 영상 자류가 생긴다. 접선 방향 자류는 회전하는 미소 전류가 PEC에 수직이라고 볼 수 있다. 즉, 법선 방향 전류의 영상 전류는 동일 방향이므로 영상 자류도 동일 방향으로 생긴다.

[그림 6] 완전 자기 도체에 대한 영상법 

완전 전기 도체가 이해되면 [그림 6]의 완전 자기 도체(PMC: Perfect Magnetic Conductor)에 대한 영상법은 매우 쉽다. 바로 맥스웰 방정식의 쌍대성(雙對性, duality of Maxwell's equations)이 있기 때문이다. [그림 2]에서 전류를 자류로, 자류를 전류로 바꾸면 [그림 6]이 증명된다.

[다음 읽을거리]
1. 표면 등가의 원리

댓글 32개 :

  1. 영상 전하법에서 도체판이 접지된 것이 아닌데 z=0에서의 전위를 영이라고 하셨는데..무한도체판이면 항상 접지된 것과 등가라고 할 수 있는지 궁금합니다. 만약 그렇다면 왜 그런지도 궁금하네요^^ 영상법 문제중에 접지를 준 것도 있고 아닌것도 있어서 여쭈어 봅니다~

    답글삭제
    답글
    1. 금속판의 유일한 경계 조건은 전기장 = 0입니다. 전압은 전자파 분야에는 잘 쓰지 않습니다.

      위의 예는 전자파가 아닌 주파수 = 0인 정전장 경우입니다. 정전장인 경우 금속판의 전압 조건은 등전위입니다.
      그래서, 식 (1)을 정확히 표현하려면 어떤 상수 전압 $V_0$를 더해줘야 합니다. 하지만 전기장 관점에서 보면 상수 전압은 의미가 없기 때문에 단순하게 $V_0 = 0$이라 둡니다.

      삭제
    2. 결국 임의의 상수를 가정할 수 있는데 편의상 영전위를 가정한 것이라는 말씀이시죠?? 답변감사합니다. 그럼 혹시 도체판이 영전위가 아닌 어떤 전위 값을 갖는다면 전공간에 전위값이 더해졌다고 생각할 수 있는 것인가요??

      삭제
    3. 예 맞습니다. 질문에 답도 하면서 본문도 수정했습니다.

      삭제
  2. 답글
    1. 오타 지적 정말 감사합니다, 곰유님. ^^

      삭제
  3. 접선방향전계성분이 왜 0이 되는지 잘 모르겠습니다. 그림에서 전계가 수직으로 들어가서 그런건가요? 그리고 궁금한게, 도체내부에는 전계가 0이라고 알고 있는데, 영상전하처럼 가정하면 도체내부 전계가 0이라고 볼 수 없지 않나요?

    답글삭제
    답글
    1. 1. 식 (1)에 구배 연산자를 적용해 $z = 0$에서의 전기장 값을 보세요. 분명히 0이 나옵니다.

      2. 영상 전하법이기 때문에 관심 영역($z \ge 0$)만 봐야 합니다. 도체 내부($z < 0$)를 보면 당연히 맞지 않습니다.

      삭제
    2. 전공관련해서 정말 많이 도움됩니다, 항상 감사합니다.^^

      삭제
    3. 외부 전계가 도체로 들어올때, 도체 표면으로 자유전자가 모여서 등전위면이 된다고 알고 있는데요. 그래서 그 등전위면에서 외부전계에 대한 반사전계가 나온다고 알고있습니다, 이 뜻은 표면에 어떤 에너지가 있으니까 반사전계가 나간다는거 같은데,.. 그렇다면 등전위면이라는게 그 면에서 전위가 같다는건데 왜 전위가 0으로 같아야 하는건지 잘 모르겠습니다.ㅠ 전위가 양의 값으로 도체의 표면이 같아도, 접선방향으로의 전계는 0이지 않나요?

      삭제
    4. donghee님, 칭찬 감사해요. ^^

      1. 식 (1)에서는 정전장을 다루고 있으므로 반사 전계는 적절하지 않습니다. 금속 상단에 (+)전하가 있으므로, 금속 상에 (-) 전하가 모인다는 표현이 맞습니다. (즉, 영상 전하이지요.)

      2. 전압이 0이 될 필요는 없습니다. 금속 상의 전압이 일정하기만 하면 됩니다.
      만약, 금속에 접선 전기장이 생기면 전하가 움직여서 전기장이 없어지겠지요. (물론 정전장 조건이라서 전하가 이미 움직였다고 생각합니다.)

      삭제
  4. 무한평면도체 사이에 점전하Q가 놓여 있을때 두판이 이루는 각도별 영상전하 갯수와 전하가 받는 힘의 방향이 궁금합니다.

    1)180도는 1개 2)90도는 사분면에 한개씩 3개 3)1도는 359개 라고 생각했는데 맞나요?

    힘의 방향은 감이 안잡히네요ㅠㅠ

    답글삭제
    답글
    1. 1. 맞습니다. 360도를 정수로 나눈 각도라면, 유한한 영상 전하로 풀 수 있습니다.

      2. 전기장을 구하려면 전압을 구한 후에 구배(gradient) 연산자를 쓰면 됩니다.

      삭제
    2. 전압을 몰라서 그냥 영상전하 플마갯수로 대략적으로 구해보려고 생각했는데... 모서리? 교차점?쪽으로 가는거 맞나요????

      삭제
    3. 현재 위치한 점전하가 정n각형의 모서리에 있다고 생각하고, 이외의 모든 모서리에 영상 점전하를 배치하고 순서대로 (+), (-)가 되게 하면 됩니다. ^^

      삭제
  5. 그림 1과 같은경우 z=0 아래쪽을 금속이라고 하지않고 접지 시켰다고 해도 상황을 동일하게 간주해도 무방한가요? '접지라면 등전위 이니까 접선방향 E 성분이 존재하지 않는다' 이렇게요

    답글삭제
    답글
    1. 네, 전압은 포텐셜이라 기준점은 잡기 나름입니다.

      삭제
  6. 아 그리고 접지의 개념이 아직 불분명 해서 그런데.. 접지를 했다는건 그 영역을 영전위로 고정한 완전도체로 봐도 무방한건가요?

    답글삭제
    답글
    1. 접지(ground)는 동일 전위라는 뜻과 동시에 전하를 무한히 저장하거나 공급할 수 있다고 가정합니다. 그래서, 지구(땅, earth)를 보통 접지로 사용합니다. ^^

      삭제
  7. 네 감사합니다~ 그러면 한가지 더 궁금한게 저 그림2 에서 설명한 영상전류법은 직류 교류 관계없이 성립하는건가요? 그리고 저기서 영상 전류는 원래 전류와 크기는 같다고 설정된 것이가요?

    답글삭제
  8. 안녕하세요.. 질문하나만 드리겠습니다.

    접지면에서 V=0이었는데 전기장을 생각하면 접지면에서 전기장은 직관적으로 0이 아닙니다... E=-gradV니까 수식으로는 전기장도 0이 나올거같은데 아니네요...또한 +Q, -Q사이에서 각각 전기장의 크기도 다를텐데..어떻게 전위가 0이 나오는지 개념이 잘 안잡히네요... 조언 부탁드립니다..

    답글삭제
    답글
    1. 접지면에서 전기장을 보면 접선은 0이고, 법선은 0이 아닙니다. 이는 경계 조건을 봐도 되고, 식 (1)을 미분해서도 얻을 수 있는 결과입니다.

      삭제
  9. 안녕하세요!!! 질문이 있습니다..!

    z=0인 곳에 무한도체평판이 있는 경우와 z<0인 영역 모두가 도체인 경우는 다른 건가요?

    z=0인 곳에 무한도체평판이 있는 경우는 z>0에 점전하 q가 존재할때 z<0에 전기장이 존재할 수 있나요?

    답변 부탁드려요!

    답글삭제
    답글
    1. 1. 두 경우는 다릅니다. 다만 경계 조건에 의해 $z > 0$ 영역의 전기장은 같고요.

      2. 말씀하신 경우는 $z < 0$의 전기장이 0입니다.

      삭제
    2. 답변 감사드립니다!

      z=0인 곳에 무한도체평판이 있는 경우, z>0에 존재하는 점전하 q에 의해 무한도체평판에 면전하가 유기되고 이 면전하로 인해 z<0에도 전기장이 존재하지 않나요??

      만약 존재하지 않는다면 z<0인 영역이 모두 도체인 경우와 어떤점에서 다른가요??

      삭제
    3. 1. z < 0의 전기장은 0입니다. PEC로 인해 z = 0의 접선 전기장이 0인 경계 조건을 생각해보세요.

      2. z < 0 영역이 모두 PEC라면 전하가 존재 못하지만, 허공이면 전하가 존재할 수 있습니다.

      삭제
    4. 답변 정말 정말 감사드립니다!

      한가지만 더 여쭤보겠습니다.

      xy평면에 무한도체가 놓여있고 (Z<0 영역은 빈공간) XY평면에 평행한 도선에 전류가 흐를 때, 이 전류에 의해 무한도체표면에 전류밀도가 생기는데 이 경우에도 앞서 질문한 전기장의 경우와 같이 Z<0 영역에서 자기장 H=0 인가요???

      답변 부탁드립니다!

      삭제
    5. 교류 전류인 경우는 당연히 자기장이 0이 됩니다. 구체적으로는 전기장이 0이 되어 자기장도 0이 됩니다. (침투 깊이로 인한 전자파 차폐라고 생각해도 됩니다.)

      삭제
    6. 답변 감사합니다!

      직류 전류인 경우에도 자기장이 0이 되나요??

      삭제
    7. 직류 전류는 자기장이 그대로 생깁니다. PEC 존재 여부와는 관계 없습니다.

      삭제

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.