1. 대칭적인 맥스웰 방정식
2. 미분 방정식의 만병통치약: 그린 함수
3. 표면 등가의 원리
[확인] 본 페이지는 exp(-iωt) 시간 약속을 사용하고 있습니다.





식 (4)와 (5)에 있는 벡터 포텐셜을 그린 함수(Green's function)로 표현하면 다음과 같다.

여기서 $\bar J$는 전류 밀도(electric current density), $\bar M$은 자류 밀도(magnetic current density), $G_A$와 $G_F$는 벡터 포텐셜에 대한 그린 함수이다. 식 (6)에 있는 전류 밀도와 자류 밀도를 표현하기 위해 표면 등가의 원리(surface equivalence principle)를 사용한다.

[그림 1] 산란체와 가상 표면
[그림 1]과 같은 산란 전자장이 있는 경우 임의의 표면[그림 1의 파란색 원]에 표면 전류 밀도와 표면 자류 밀도가 있다고 [그림 2]처럼 가정할 수 있다.

[그림 2] 영(零)의 전자기장 가정
이때 표면 전류 밀도 $\bar J_s$와 표면 자류 밀도 $\bar M_s$는 아래 식처럼 유도된다.

식 (7)을 식 (6)에 대입하고 식 (6)을 다시 식 (4)와 (5)에 대입하면 최종적인 프란츠 공식(Franz formula)을 얻는다[1], [2]. 참 쉽죠?
(8)
(9)


여기서 $\bar E ( \bar r)$와 $\bar H ( \bar r)$는 $s'$ 내부 전자장을 0으로 만드는 등가적인 전류와 자류 밀도가 만드는 전기장과 자기장이다. 또한 $\bar E ( \bar r)$와 $\bar H ( \bar r)$를 만든 원천은 $s'$ 내부에 있다. 우리가 생각하는 영역이 [그림 2]의 영역 (II)와 같은 자유 공간이면 3차원 자유 공간 그린 함수(3D free-space Green's function)를 쓰면 된다. 물론 영역 (I)은 전자기장이 0이라는 조건을 부여해야 한다.

이상의 설명을 보고 참 쉽죠?를 연발한 전설적인 화가 밥 로스를 떠올려보자. 무엇이든지 누군가에게는 참 쉽고 누군가에게는 너무 어렵다. 우리는 어느 쪽에 설 것인가? 우리가 쉬는 시간에 쓰는 노력이 우리의 다음 위치를 결정한다.
[1] W. Franz, "Zur formulierung des Huygensschen prinzips (For the formulation of Huygens' principle)," Zeitschrift Naturforschung Teil A (Journal of Natural Research Part A), vol. 3, pp. 500-506, 1948.
[2] C.-T. Tai, "Kirchhoff theory: scalar, vector, or dyadic?," IEEE Trans. Antennas Propagat., vol. 20, no. 1, pp. 114-115, Jan. 1972.
[다음 읽을거리]
1. 스트래튼-추 공식
댓글 없음 :
댓글 쓰기
욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.