2024년 7월 1일 월요일

로렌츠 진동자 모형(Lorentz Oscillator Model)

[경고] 아래 글을 읽지 않고 "로렌츠 진동자 모형"을 보면 바보로 느껴질 수 있습니다.

[확인] 본 페이지는 exp(-iωt)와 exp(jωt) 시간 약속을 둘 다 사용하고 있습니다.


[그림 1] 로렌츠 진동자 모형으로 근사화한 복소 유전율(출처: wikipedia.org)

원자(atom)의 내부 구조를 모르던 시절에 나온 로렌츠 진동자 모형(Lorentz oscillator model)은 전자(electron)와 양성자(proton) 간의 전기력만 이용한 이론화인데도 유전율(permittivity) $\epsilon$의 주파수 변동성을 잘 설명한다[1]. 로렌츠 진동자 모형은 전기력, 훅의 법칙(Hooke's law), 견인 계수(drag coefficient) $\gamma$가 전자에 함께 작용한다고 생각해서 뉴턴의 운동 법칙(Newton's law of motion)을 적용한다.

                  (1)

여기서 $\bar r$은 양성자를 원점으로 정한 전자의 위치, $\bar E$는 전기장(electric field), $m_e$와 $e$는 각각 전자의 질량과 전하량, $k$는 스프링 상수(spring constant), 견인 계수 $\gamma$는 손실(loss)을 설명한다. 견인 계수 기호로 $\gamma$ 대신 대문자인 $\Gamma$를 쓰는 경우도 있다.
전기장과 전자의 위치는 주기성이 있다고 가정해 페이저(phasor) 기반으로 $\bar E$ = $\bar {\bf E}(\omega) e^{-i \omega t}$, $\bar r$ = $\bar {\bf r}(\omega) e^{-i \omega t}$로 둘 수 있다. 이를 식 (1)에 대입해서 $\bar {\bf r}(\omega)$를 구한다.

                          (2)

여기서 진동자(oscillator)의 공진 각주파수(resonant angular frequency)는 $\omega_0$ = $\sqrt{ k / m_e}$이다. 외부 전기장에 의해 양성자에서 멀어진 전자는 전기 쌍극자 모멘트(electric dipole moment) $\bar {\bf p}(\omega)$를 형성한다.

                          (3)

체적 $V$에 존재하는 $N$개의 전기 쌍극자 모멘트는 모두 같은 방향을 향한다고 간략화함으로써 분극 밀도 $\bar {\bf P}(\omega)$를 쉽게 얻는다.

                          (4)

여기서 $n_e$ = $N/V$는 전자 농도(electron concentration), 플라즈마 각주파수(plasma angular frequency)는 $\omega_p$ = $\sqrt{n_e e^2 \mathbin{/} (m_e \epsilon_0)}$, $\chi_e (\omega)$는 전기 감수율(electric susceptibility)이다. 전기장이 생성하는 물질 내부의 분극 밀도를 알기 때문에, 구성 관계식(constitutional relation)을 써서 주파수에 따라 변하는 복소 유전율(complex permittivity) $\epsilon(\omega)$를 공식화한다.

                          (5)

여기서 $\chi_e(\omega)$ = $\chi_e'(\omega) + i \chi_e''(\omega)$이다. 공진 주파수 $f_0$ = $\omega_0 \mathbin{/} (2 \pi)$는 수십 THz 이상으로 매우 높고 다수의 공진이 생길 수 있기 때문에, 실제 측정 결과를 보정하는 공식은 식 (5)를 더 일반화해서 사용한다.

                          (6)

여기서 $\epsilon_\infty$는 무한대에서 측정한 유전 상수[이론적으로는 1이지만 실험에서는 1이상 나옴], $f_j$는 $j$번 공진의 가중치, $N_r$은 공진 개수이다. 식 (6)에서 $s_j$ = $\omega_p^2 f_j$, $\Gamma_j$ = $\gamma_j$로 쓰기도 한다.
복소 유전율 대신 광학 전도도(optical conductivity)에 로렌츠 진동자 모형을 쓰기도 한다. 광학 전도도는 전기 전도도(electrical conductivity)를 광학 영역으로 일반화한 지표이다. 복소 유전율에서 정의한 손실 탄젠트(loss tangent)를 전기 전도도 형태로 바꾸어서 광학 전도도 $\sigma(\omega)$를 정의한다. 그래서 광학 전도도는 광학 영역에서 물질에 흡수되는 양과 관련된다.

                          (7)

여기서 주파수가 매우 커지면 광학 전도도는 0에 수렴한다.[∵ $\epsilon(\omega)$는 $1/\omega^2$ 비율로 작아진다.]

[그림 2] RLC 직렬 공진 회로(출처: wikipedia.org)

독특하게 생긴 로렌츠 진동자 모형을 [그림 2]에 보인 전기 회로의 RLC 직렬 공진 회로(series resonant circuit)로 등가화해 상상할 수 있다[2].

[참고문헌]
[1] T. Hirosige, "Origins of Lorentz' theory of electrons and the concept of the electromagnetic field," Hist. Stud. Phys. Sci., vol. 1, pp. 151–209, Jan. 1969.
[2] R. E. Collin, Foundations for Microwave Engineering, 2nd ed., New York, NY, USA: Wiley-IEEE Press, 2001, pp. 33–39.

댓글 없음 :

댓글 쓰기

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.