2020년 11월 28일 토요일

라돈 변환(Radon Transform)

[경고] 아래 글을 읽지 않고 "라돈 변환"을 보면 바보로 느껴질 수 있습니다.


[그림 1] 라돈 변환과 컴퓨터 단층 촬영(출처: wikipedia.org)

푸리에 급수(Fourier series)푸리에 변환(Fourier transform)현대 수학을 만든 시초라 할 수 있다. 푸리에 변환에 버금가는 대단한 기여를 한 적분 변환중 하나는 라돈 변환(Radon transform)이다. 라돈 변환은 수학자 라돈Johann Radon(1887–1956)이 1917년라돈 30세, 일제 식민지 시절에 제안했다[1]. 사영(projection)을 이용해 원래 물체의 영상을 복원하는 라돈 변환의 대표적 응용은 [그림 1]에 소개한 컴퓨터 단층 촬영(computed tomography, CT)이다. CT 기술은 EMI의 공학자인 하운스필드Godfrey Hounsfield(1919–2004)에 의해 1972년하운스필드 53세, 박정희 정부 시절에 최초로 상용화되었다.

[그림 2] 미국을 방문한 비틀즈(출처: wikipedia.org)

음반 회사로 유명한 EMI는 비틀즈(The Beatles) 때문에 엄청난 매출과 수입을 올렸다. 비틀즈가 번 돈은 EMI가 만들던 CT 기술에도 투입되어서 인류를 위한 의료 기술 개발에 훌륭하게 쓰였다. 비틀즈의 노래를 사랑한 팬들은 알게 모르게 CT 기술에 대한 간접 지원을 한 것이었다. 돈을 매개로 한 예술과 과학의 놀라운 만남이다.

[그림 3] CT 주사기(scanner)의 내부 구조(출처: wikipedia.org)

[그림 3]은 전형적인 CT 주사기(scanner)의 내부 구조를 보여준다. X선관(X-ray tube) T에서 나온 X선 X는 공동[빈 구멍] 위치에 놓일 물체에 일부 흡수되면서 X선 검출기(X-ray detector) D까지 거의 직선으로 진행한다. 더 세부적으로 보면, X선은 직진성이 매우 높아서 송신기에서 수신기까지 가는 경로는 거의 직선으로 가정할 수 있고, 물체에 의해 흡수되기 때문에 물체의 종류에 따라 투과율이 달라진다. 예를 들어 전기장의 거리별 감쇠(attenuation)는 $|E(z)|$ = $|E_0| e^{-\alpha z}$로 표현되므로, [그림 3, 4]처럼 X선관에서 발생한 X선이 물체를 거쳐 검출기에 수신되는 복사 선속(radiant flux) 혹은 복사 전력(radiant power) $I_\theta(s)$는 다음처럼 공식화한다.

                  (1)

여기서 $I_0$는 X선관의 복사 선속, $\alpha(s, t; \theta)$는 물체를 통과할 때 생기는 위치별 감쇠 상수, $p_\theta(s)$는 사영 함수(projection function)이다. 식 (1)을 정리해서 사영 함수를 물체의 감쇠 상수로 표기할 수도 있다.

                  (2)

여기서 $I_\theta(s)/I_0$는 X선 검출기의 수신 전력 비율이다. 따라서 라돈 변환의 핵심인 사영 함수는 복사 선속에 대한 로그 함수 비율과 등가이다. 즉 라돈이 제안한 라돈 변환은 [그림 3]에 보여준 물체에 대한 X선(X-ray) 투과와 밀접히 연결된다.

[그림 4] 라돈 변환의 좌표계(출처: wikipedia.org)
(1) 물체(object)
(2) 광선의 시작선(starting line of rays)
(3) 광선의 종료선(ending line of rays)
(4) 투과 광선(transmission ray)
(5) 자료 원(datum circle)
(6) 원점(origin)
(7) 사영 함수(projection function) $p_\theta(s)$

[그림 4]는 라돈 변환을 정의할 때 사용하는 좌표계를 표현한다. [그림 3, 4]를 비교하면 수학적인 라돈 변환을 물리적 실재로 구현한 결과가 CT 기술임을 잘 알 수 있다. [그림 4]에서 주어진[혹은 고정된] $s, \theta$에 대해 점 $(x, y)$를 새로운 좌표축 $t$로 표현하면 다음과 같다.

                  (3)

여기서 $s$ = $x \cos \theta + y \sin \theta$, $t$ = $-x \sin \theta + y \cos \theta$, $x^2 + y^2$ = $s^2 + t^2$이다. 식 (3)을 간편하게 2차원 회전 행렬(rotation matrix)처럼 쓸 수도 있다.

                  (4)

여기서 점 $(s, t)$를 위한 좌표축 $s, t$는 기준 좌표축 $x, y$를 $\theta$만큼 회전시켜 얻는다. 시작선에서 나와서 종료선까지 적분하는 사영 함수(projection function) $P_\theta(s)$는 다음과 같은 선 적분(line integral)으로 정의한다.

                  (5)

여기서 $f(x, y)$는 고정점 $z$ = $z_0$에 대한 물체의 2차원 절편(slice)이며, $(x, y)$는 식 (3)의 정의를 사용한다. 사영 함수 $p_\theta(s)$는 공동도(空洞圖) 혹은 사이노그램(sinogram)이라고도 한다. 공동도는 구멍(sinus, opening)에 대한 그림(gram)이란 뜻이다. 변수 $t$가 변하는 범위를 전체 실수로 확장하면 식 (5)는 라돈 변환이 된다.

                  (6)

각도를 $\theta + \pi$로 바꾸면, $p_{\theta + \pi}(s)$ = $p_\theta(-s)$ 혹은 $p_\theta(s)$ = $p_{\theta + \pi}(-s)$가 항상 성립한다.

[그림 5] 푸리에 절편 정리(출처: wikipedia.org)

사영 함수는 푸리에 변환 관점으로 관찰해야 숨겨진 내면을 볼 수 있다. 푸리에 절편 정리(Fourier slice theorem) 혹은 사영-절편 정리(projection-slice theorem)에 따라 사영 함수의 푸리에 변환을 구한다. 2차원에 대한 푸리에 절편 정리는 다음과 같다. 

                  (7)

식 (7)에 제시한 푸리에 절편 정리에 의해, 사영 함수 $p(x)$의 푸리에 변환 $\mathfrak{F}[p(x)]$는 차원 하나가 축소된 푸리에 변환 $P(\xi)$ = $F(\xi, 0)$을 만든다. 이 개념을 $N$차원 공간으로 일반화해서 식 (7)을 $N$차원 푸리에 절편 정리로 확장한다.

                  (8)

여기서 $p(\cdot)$는 좌표 성분 $x_{N-m+1}, \cdots, x_N$에 대한 공간 영역의 사영(projection), $\mathfrak{F}_{N-m}[\cdot]$는 $x_1, \cdots, x_{N-m}$에 대한 푸리에 변환, $F(\cdot)$는 $\xi_{N-m+1}, \cdots, \xi_N$ 성분을 $0$으로 바꾼 파수 영역의 절편(slice)이다.
식 (7)에 의해 공간 영역(spatial domain)에서 회전 각도를 $\theta$만큼 돌리면서 구한 사영 함수 $p_\theta(s)$의 푸리에 변환 $P_\theta (\kappa)$는 파수 영역(spectral domain)에서도 각도 $\theta$만큼 회전한다. 따라서 다음 관계식을 보간(interpolation)해서 $f(x, y)$의 2차원 푸리에 변환 $F(\xi, \eta)$를 근사한다.

                  (9)

2차원 푸리에 절편 정리인 식 (9)를 이용해서 파수 영역의 2차원 푸리에 변환 $F(\xi, \eta)$를 쉽게 구할 수 있다고 오해할 수 있다. 하지만 파수 영역의 절편 함수(slice function) $P_\theta (\kappa)$는 원점 $(\xi, \eta)$ = $(0, 0)$를 지나는 직선이라서, 원점 부근의 표본[낮은 파수 성분]이 과대 평가되고 원점을 벗어난 표본[높은 파수 성분]은 과소 평가되는 심각한 문제가 있다.

[그림 6] 복소 영역에서 절편 함수의 분포(출처: wikipedia.org)

파수 영역의 절편 함수[파란색 선]가 가진 한계를 [그림 6]이 분명히 보여준다. 원점에는 직선이 잘 모이지만, 반지름이 커지면 직선간의 간격이 넓어져서 문제가 된다. 그래서 [그림 6]과 같은 파수 영역의 절편 함수를 적절히 보간(interpolation)해서 근사적으로 절편 표본간의 간격을 비슷하게 만든다. 그 다음에 보간한 $F(\xi, \eta)$의 푸리에 역변환을 취해서 물체의 2차원 영상 $f(x, y)$를 다음처럼 근사적으로 복원한다.

                  (10)

여기서 $\operatorname{Int}[{\bf A}]$는 집합(set) $\bf A$의 원소로 만드는 보간을 의미한다.
식 (10)은 근사가 많이 들어간 영상 복원법이라서, 수학적으로 더 엄밀하고 세련되게 이론을 전개할 필요가 있다. 이를 위해 원통 좌표계에서 사용하는 푸리에 변환인 한켈 변환(Hankel transform)을 식 (10)에 적용해서 정확한 라돈 역변환(inverse Radon transform)을 정의한다. 모든 각도 $\theta$에 대해 식 (9)를 계산한 후 복원한 물체의 영상 $f(x, y)$는 다음과 같다[3].

                  (11)

사영 함수의 푸리에 변환 $P_\theta (\kappa)$는 $\theta$에 대해 주기적이므로 푸리에 급수로 전개한다. 이 결과를 식 (11)에 넣고 한켈 변환처럼 정리해서 라돈 역변환을 얻는다.

                  (12)

여기서 $x$ = $\rho \cos \phi$, $y$ = $\rho \sin \phi$, $J_n (\cdot)$는 제$n$차 제1종 베셀 함수(Bessel function of the first kind)이다. 파수 영역에서 정의된 $P_n(\kappa)$는 $\theta$에 대한 평균값으로 정확히 구한다.

                  (13)

한켈 변환으로 라돈 역변환을 유도할 수 있지만, 권위 있는 원류는 라돈이 제안한 방법[1]이다. 방사선 원소인 라돈(Radon, Rn) 혹은 라듐(radium, Ra)과 이름이 비슷해서 위험하다는 오해를 받을 때도 있지만, 라돈은 인류에 기여한 아름다운 수학자이다. 라돈이 제안한 라돈 역변환은 사영 함수 $p_\theta(s)$로부터 시작한다. 디랙 델타 함수(Dirac delta function)를 도입해서 사영 함수를 2차원 공간에서 다시 표현한다.

                  (14)

[그림 4]에서 보여준 좌표축의 회전 각도 $\theta$에 대한 평균 사영 함수 $\bar p(s)$는 다음과 같다.

                  (15)

데카르트 좌표계(Cartesian coordinate system)를 원통 좌표계(circular cylindrical coordinate system)로 바꾸어서 디랙 델타 함수의 적분을 구한다.

                  (16)

여기서 $x$ = $\rho \cos \phi$, $y$ = $\rho \sin \phi$, $\rho > |s|$, $\theta_1$과 $\theta_2$는 $\delta(\cdot)$의 입력 변수에 대한 근이며 $\rho  \cos (\theta_{1,2} - \phi)$ = $s$가 성립한다. 식 (16)을 식 (15)에 넣고 $f(x, y)$의 평균값 $\bar f(\rho)$가 피적분 함수에 나타나도록 정리한다.

                  (17)

식 (17)은 아벨의 적분 방정식(Abel's integral equation)이므로, 다음과 같은 해석적인 해법으로 쉽게 해결된다.

          (18)

여기서 $\alpha$ = $1/2$이다. 따라서 $\bar f(\rho)$는 다음처럼 공식화된다.

                  (19)

여기서 식 (18)의 오른쪽 식에 나온 극한은 $0$이라 가정한다. 결국 반지름 $\rho$를 $0$으로 보내면, 함수값 $f(0, 0)$를 사영 함수의 적분으로 정확히 표현할 수 있다.

                  (20)

[그림 7] 일반적인 라돈 역변환을 위한 좌표 변환

임의의 위치에서 $f(x, y)$를 완벽하게 복원하기 위해, [그림 7]처럼 원점 $(0, 0)$을 $(x_0, y_0)$으로 보내는 좌표 변환에 따라 평균값 $\bar f(\rho)$와 $\bar p(s)$를 다음과 같이 일반화한다.

                  (21)

여기서 $\bar f(0, 0; r)$ = $\bar f(r)$, $\bar p(0, 0; q)$ = $\bar p(q)$, $q$는 $(x_0, y_0)$를 기준으로 양수나 음수가 된다. 식 (15), (17)에 식 (21)을 적용해서 식 (19)를 변형한다.

                  (22)

최종적으로 반지름 $r$이 $0$으로 가는 극한에 의해 식 (22)는 물체의 2차원 영상 $f(x, y)$가 된다.

                  (23)

식 (23)의 적분에는 함수 미분소가 있어서 다소 복잡하므로, 부분 적분을 적용해서 다음처럼 단순화한다.

                  (24)

[라돈 역변환의 조건]
라돈 역변환이 성립하기 위한 조건은 다음과 같다.
  • 물체의 영상 $f(x, y)$는 연속이다.
  • 식 (17)의 성립을 위해 다음 이중 적분은 수렴한다: 

  • 식 (22)를 만족하기 위해 임의의 점 $(x, y)$에서 다음 극한이 성립한다: $\lim_{r \to \infty} \bar f(x, y; r)$ = $0$ 

[참고문헌]
[1] J. Radon, "Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten (On the determination of functions by their integral values along certain manifolds)," Berichte über die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig (Reports on the Proceedings of the Royal Saxonian Academy of Sciences in Leipzig), vol. 69, pp. 262–277, Apr. 1917. (In German, 방문일 2020-11-28)
[2] 박미경, 이의택, "Computed Tomography에 의한 절편 영상의 추정", 전자통신동향분석, 제12권, 제6호, pp. 50–57, 1997년 12월.
[3] E. Won, "Derivation of the inverse Radon transformation," Eunil Won's Home Page, Nov. 2007. (방문일 2020-12-05)

2020년 11월 15일 일요일

변형 베셀 함수(Modified Bessel Function)

[경고] 아래 글을 읽지 않고 "변형 베셀 함수"를 보면 바보로 느껴질 수 있습니다.


[그림 1] 제1종 변형 베셀 함수(출처: wikipedia.org)

기존 베셀 함수(Bessel function)의 입력 변수(argument)를 실수에서 순허수로 바꾼 함수는 변형 베셀 함수(modified Bessel function)라고 부른다. 제1종 베셀 함수 $J_\nu (x)$를 바탕으로 제1종 변형 베셀 함수(modified Bessel function of the first kind) $I_\nu (x)$를 다음처럼 정의한다.

                  (1)

제1종 변형 베셀 함수가 알파벳 I로 시작하는 이유는 허수 입력 변수(imaginary argument)를 강조하기 위해서이다[1]. 식 (1)과 같은 다소 복잡한 정의가 필요한 이유는 $J_\nu (x)$의 무한 급수(infinite series) 표현식에서 찾을 수 있다.

                      (2)

식 (2)를 식 (1)에 대입해서 깔끔하게 정리해본다.

                      (3)

베셀 함수에 순허수를 대입한 결과인 식 (3)의 우변은 신기하게도 다시 실수가 된다. 즉 식 (1)처럼 정의하면, 순허수를 $J_\nu (x)$의 입력 변수에 대입하더라도 $I_\nu (x)$의 함수값은 실수가 되어서 편리하다.
식 (4)에 제시한 베셀의 미분 방정식(Bessel's differential equation)에서 $x$ 대신에 $ix$로 치환하면, 변형 베셀 함수를 위한 미분 방정식인 식 (5)도 유도할 수 있다.
 
                      (4)

                      (5)

[그림 2] 제2종 변형 베셀 함수(출처: wikipedia.org)

제2종 변형 베셀 함수(modified Bessel function of the second kind)도 제2종 베셀 함수 $N_\nu (x)$를 이용해서 식 (1)과 비슷하게 정의할 것 같다. 하지만 우리 예상을 깨고 $N_\nu (x)$가 아닌 제1종 한켈 함수(Hankel function of the first kine) $H_\nu^{(1)}(x)$를 바탕으로 제2종 변형 베셀 함수 $K_\nu (x)$를 정의한다.

                      (6)

여기서 $K_\nu (x)$는 맥도날드 함수(Macdonald function)라고도 한다[2]. 제2종 베셀 함수를 $K_\nu (x)$의 정의에 사용하지 못하는 이유는 두 가지 때문이다. 첫째는 $N_\nu (ix)$의 함수값에 임의의 복소 상수를 곱해도 실수값이 되지 않는다. 둘째는 입력 변수가 순허수인 경우 $J_\nu (ix)$와 $N_\nu (ix)$의 점근식이 모두 같은 모양으로 발산하기 때문에 서로 독립이 되지 않는다. 이로 인해 $K_\nu (x)$에 대해 식 (6)과 같은 독특한 정의를 도입한다. 더 구체적으로 보면, 식 (6)의 점근식은 식 (1)과 정반대로 움직여서 지수 함수적으로 감소한다. 그래서 점근식 관점에서 식 (1)과 (6)은 서로 달라서 독립적인 해가 된다.

                      (7)

                      (8)

식 (6)의 함수값이 실수임은 어떻게 증명할까? 제1종 베셀 함수와 한켈 함수의 관계를 이용해서 다음과 같은 전개를 한다.

                      (9)

제1종 변형 베셀 함수가 실수이기 때문에, 식 (9)의 마지막식도 실수가 된다. 따라서 복소수인 제1종 한켈 함수를 사용하더라도 $K_\nu (x)$는 항상 실수가 된다.
식 (6)의 정의에는 약간 지저분해보이는 상수 $\pi/2$가 있다. 이 상수는 베셀 함수의 역사성을 설명한다. 베셀Friedrich Wilhelm Bessel(1784–1846)은 제1종 베셀 함수 $J_\nu (x)$를 통일되게 잘 정의했지만, 정수 차수를 가진 제2종 베셀 함수를 얻는 방법은 여러 수학자에 의해 다양하게 제안되었다[1]. 맨처음 정수 차수의 제2종 베셀 함수 ${\bf Y}_n (x)$를 정의한 사람은 요절한 수학자 한켈Hermann Hankel(1839–1873)이다.

                      (10)

식 (10)을 기반으로 베버Heinrich Martin Weber(1842–1913)는 우리가 흔히 사용하는 $N_n (x)$를 다시 정의했다.

                      (11)

수학자 쉴레플리Ludwig Schläfli(1814–1895)는 식 (11)에 상수 $\pi/2$를 곱해서 다음처럼 사용했다.

                      (12)

여기서 $K_\nu (x)$는 제2종 변형 베셀 함수가 아니고 쉴레플리가 썼던 제2종 베셀 함수이다. 상상하기 쉬운 추측이지만, 제2종 변형 베셀 함수 $K_\nu (x)$의 정의는 식 (12)에서 유추해서 상수 $\pi/2$를 포함한다. 상수 $\pi/2$의 의미는 $N_n (x)$의 무한 급수 표현식을 보면 알 수 있다.

                 (13)

즉 식 (9)처럼 $\pi/2$를 곱한 정의는 $x$ = $0$에서 전개한 무한 급수를 간략화시킨다. 하지만 식 (7)과 (8)처럼 점근식의 계수가 달라지는 문제가 있다. 이런 문제는 식 (11)처럼 $\pi/2$를 생략하면 해결된다.
이와 같이 제2종 베셀 함수의 정의는 여러 가지가 있었지만, 제2종 베셀 함수는 식 (11)로 굳어지고 제2종 변형 베셀 함수는 식 (6)을 주로 쓰면서 서로 다른 모양을 가지게 되었다. 다시 말해 제2종 베셀 함수는 제1종 베셀 함수와 점근식을 통일하기 위해 $\pi/2$없이 정의한다. 하지만 제2종 변형 베셀 함수는 간단한 무한 급수 표현식을 위해 오히려 $\pi/2$를 곱해서 사용한다.
제1종 변형 베셀 함수의 입력 변수를 복소수로 확장한 경우는 식 (1)을 약간 변형해서 다음과 같은 새로운 정의를 사용한다.

                      (13)

여기서 $z$는 복소수이다. 다른 베셀 함수와 마찬가지로, 식 (3)에서 유도한 $I_\nu (z)$의 무한 급수 표현식은 $z^\nu$ 항을 가져서 가지 자름(branch cut)은 음의 실수축에 생긴다. 이에 따라 $z$의 편각(偏角, argument) $\operatorname{arg}(z)$은 $-\pi$부터 출발해 한바퀴만 돈다. 또 한가지 고려할 점은 식 (1)에 도입한 제1종 베셀 함수와의 관계이다. 제1종 변형 베셀 함수 $I_\nu (z)$를 정의한 $J_\nu (z)$는 음의 실수축을 연속이 되게 하는 해석적 연속(analytic continuation)에 의해 다음 관계식을 만족해야 한다.

                      (14)

따라서 식 (1) 혹은 식 (13)의 첫째식을 기준으로 $\operatorname{arg}(z)$가 $\pi/2$를 넘어가면, $iz$는 식 (13)에 의해 음의 실수축을 지나게 된다. 그래서 식 (14)를 이용해 다음과 같은 해석적 연속을 적용해 연속으로 만든다.

                      (15)

결국 $\operatorname{arg}(z)$가 $\pi/2$를 초과한 경우는 식 (13)의 둘째식을 써야 제1종 베셀 함수의 해석적 연속을 만족하게 된다. 제1종 베셀 함수처럼 $I_\nu (z)/ z^\nu$는 해석적이므로,  식 (14)처럼 $I_\nu (z)$의 해석적 연속은 다음과 같다.

                      (16)

여기서 $m$은 정수이다. 입력 변수를 복소수로 확장한 제2종 변형 베셀 함수의 정의는 다음과 같다.

                      (17)

식 (17)과 (18)에 나온 제1종 한켈 함수의 해석적 연속이 간단해지는 경우는 입력 변수에 $e^{\pi i}$가 있을 때이다.

                      (18)

 따라서 식 (17)의 첫째식을 다음과 같이 변형해서 식 (17)의 둘째식을 유도한다.

                      (19)

편각 $\operatorname{arg}(z)$가 $\pi/2$를 넘어가면, 식 (17)의 정의역처럼 가지 자름을 염두에 두고 $\operatorname{arg}(z)$의 시작점을 $-\pi/2$로 바꾼다. 제2종 변형 베셀 함수 $K_\nu (z)$의 해석적 연속은 식 (9)와 (16)을 이용해서 결정한다.

                      (20)

식 (1)과 (6)에 소개한 변형 베셀 함수의 정의를 이용해서 다양한 수학 정리를 손쉽게 유도할 수 있다.


   1. 기본(basics)   

[일반화된 음의 차수]

                  (1.1)

[증명]
식 (9)를 정리해서 식 (1.1)의 첫째식을 증명한다. 식 (1.1)의 둘째식은 식 (6)으로 유도한다.
______________________________

식 (1.1)에 의해 $\nu$가 정수인 경우 다음 관계식이 성립한다.

                  (1.2)


   2. 함수 표현식(function representation)   

[그림 2.1] 한켈 경로 $\mathcal{H}$의 원점 대칭 경로 $\mathcal{C}$ = $-\mathcal{H}$

[쉴레플리의 제1 적분(Schläfli's first integral)]

                  (2.1)

[증명]
베셀 함수에 대한 쉴레플리의 제1 적분(Schläfli's first integral for Bessel function)에서 변수 $z$는 임의가 될 수 있어서 식 (1)처럼 $z$ = $ix$를 대입해서 정리한다.

                      (2.2)

                      (2.3)
______________________________

식 (2.3)에 유도한 결과를 보면, 식 (1)의 정의는 쉴레플리의 제1 적분을 가장 깔끔하게 만들어주어서 유용하다.

[그림 2.2] 한켈 경로의 원점 대칭 경로 $\mathcal{C}$와 관련된 사각형 경로 $\mathcal{R}$

[쉴레플리의 적분(Schläfli's integral)]

                      (2.4)

                      (2.5)

[증명]
식 (2.1)의 복소 변수 $u$를 $xt/2$로 치환해서 식 (2.4)를 증명한다. 비슷하게 식 (2.4)에 나온 복소 변수 $t$를 $e^w$로 바꾼다.

                      (2.6)

여기서 $w$는 [그림 2.2]에 나온 사각형 경로 $\mathcal{R}$을 따라간다.
______________________________

[변형 베셀 함수에 대한 쉴레플리의 일반화(Schläfli's generalization for modified Bessel function)]

                      (2.7)

[증명]
사각형 경로 $\mathcal{R}$은 선분으로 구성되어서 적분하기 매우 편하다. 베셀 함수의 경우처럼 적분 구간을 [그림 2.2]와 동일하게 설정해서 있는 그대로 적분한다.

                      (2.8)
______________________________

                      (2.9)

[증명]
변형 베셀 함수 $K_\nu(x)$의 또 다른 정의인 식 (9)에 식 (2.7)을 넣어서 두 적분을 서로 합한다.

                      (2.10)
______________________________

                      (2.11)

[증명]
식 (2.9)에서 $u$ = $e^t$로 변수 치환하고 적분도 분리하여 증명한다.

                      (2.12)
______________________________

                      (2.13)

[증명]
식 (2.13)은 식 (2.11)를 $u$ = $xt/2$로 변수 치환한 결과이다.
______________________________

식 (2.11)과 (2.13)은 제2종 변형 베셀 함수에 대한 쉴레플리의 적분이 된다.


[참고문헌]
[1] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922.
[2] H. M. Macdonald, "Zeroes of the Bessel functions," Proc. London Math. Soc., vol. 29, pp. 575–584, 1898.

[다음 읽을거리]