[경고] 아래 글을 읽지 않고 "직교 다항식"을 보면 바보로 느껴질 수 있습니다.
[그림 1] 기하학에서 쓰이는 직교성(출처: wikipedia.org)
[그림 1]처럼 기하학에서 직각(right angle)의 의미로 쓰이는 직교성(orthogonality)은 함수상 내적(inner product on functions) $\langle f, g \rangle$로 추상화해서 사용 범위를 적분(integration)으로 확장할 수 있다. 함수의 직교성은 스튀름–리우빌 이론(Sturm–Liouville Theory)의 결과이면서 완비성(completeness)을 증명하는 중요 수단이다.
(1)
여기서 $r(x)$는 스튀름–리우빌 이론에 나오는 밀도 함수(density function) 혹은 가중치 함수(weighting function)이며 항상 0보다 크다. 직교 다항식(orthogonal polynomial)은 식 (1)의 함수 $f(x), g(x)$가 다항식이며 그 내적은 0이 되는 다항식이다.
(2)
주어진 적분 구간 $[a, b]$에서 직교 다항식을 생성하는 표준 방법은 그람–슈미트 과정(Gram–Schmidt process)이다. 다항식의 기저(basis)를 $1$, $x$, $\cdots$, $x^{n-1}$, $x^n$으로 두고, 주어진 다항식에 직교하는 또 다른 직교 함수를 차례로 생성한다. 먼저 그람–슈미트 과정에 따라 $\psi_0(x)$ = $a_0$으로 둔다. 다음으로 $\psi_1(x)$의 기저 $x$의 계수는 $a_1$로 설정하고 $\psi_0(x)$와 평행한 부분을 제거해서 $\langle \psi_1(x), \psi_0(x) \rangle$ = $0$으로 만든다.
(3a)
여기서 $a_n$은 $\psi_n(x)$에서 $x^n$의 실수 계수이다. 비슷한 방법으로 저차 다항식에 모두 직교하는 고차 다항식을 계속 만들 수 있다. 예를 들어, $\psi_0(x)$와 $\psi_1(x)$에 직교하도록 $\psi_2(x)$를 생성한다.
(3b)
(3c)
또한 $\psi_0(x), \psi_1(x), \cdots, \psi_n(x)$는 직교 기저(orthogonal basis)이기 때문에 $x^m$과도 항상 직교한다.
(4)
여기서 $\alpha_i$ = $\langle x^m, \psi_i(x) \rangle \mathbin{/} \langle \psi_i(x), \psi_i(x) \rangle$이다. 이와 같이 직교 다항식을 구성하는 계수 $a_0, a_1, \cdots, a_n$은 임의의 실수가 될 수 있으므로, 직교 다항식은 무수히 많이 존재한다.
직교 다항식 $\psi_n(x)$는 직교성인 식 (2)를 변형해서 스튀름–리우빌 미분 방정식(Sturm–Liouville differential equation)에 포함시킬 수 있다[1]. 그러면 스튀름–리우빌 이론(Sturm–Liouville theory)의 다양한 결과가 직교 다항식에도 바로 적용된다.
[참고문헌]
[1] J. Shohat, "A differential equation for orthogonal polynomials," Duke Math. J., vol. 5, no. 2, pp. 401–417, Jun. 1939.
[다음 읽을거리]
댓글 없음 :
댓글 쓰기
욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.