[경고] 아래 글을 읽지 않고 "페이저를 이용한 맥스웰 방정식"을 보면 바보로 느껴질 수 있습니다.
1. 맥스웰 방정식
2. 전자기장 파동 방정식
3. 포텐셜 기반 파동 방정식
4. 정말 유용한 페이저 개념
[확인] 본 페이지는 exp(-iωt) 시간 약속을 사용하고 있습니다.
[그림 1] 주파수의 개념(출처: wikipedia.org)
[그림 2] 파장의 개념(출처: wikipedia.org)
페이저를 이용하면 시간에 대한
미분 방정식을 이용하지 않고 대수적으로
맥스웰 방정식을 풀 수 있다. 이때 페이저에 대한 시간 약속
(time convention)을 하게 된다. 시간 약속은 두 가지 종류가 있어 이를 처음 대하는 사람들은 많이 헷갈리게 된다.
(1)
(2)
또 다른 시간 약속은 식 (2)에 있는 $\exp(-i\omega t)$이다. $\exp(-i\omega t)$ 시간 약속은 공간을 중심으로 맥스웰 방정식을 연구하는 사람들이 사용한다. 즉,
전자파,
안테나, 산란을 연구하는 사람들은 보통 $\exp(-i\omega t)$ 시간 약속을 사용한다. 이 방식의 장점은
파동 방정식(wave equation)을 풀어봐야 이해할 수 있다. 두 가지 방식이 존재한다 해서 너무 힘들게 생각할 필요는 없다. 식 (1)과 (2)는 서로
켤레 복소수(complex conjugate)이다. 예를 들어, 식 (2)로 푼 결과에 켤레 복소수를 취하면 식 (1)로 구한 결과가 된다. 이 부분만 기억하면 참 쉽다.
(3: 쿨롱의 법칙)
(4: 패러데이의 법칙)
(5: 비오-사바르의 법칙)
(6: 변위전류 포함 암페어의 법칙)
식 (4)와 (6)에 있는 시간 미분을 식 (2)의 $\exp(-i\omega t)$ 시간 약속을 이용해 복소수로 바꾸어보자.
(7: 쿨롱의 법칙)
(8: 패러데이의 법칙)
(9: 비오-사바르의 법칙)
(10: 변위전류 포함 암페어의 법칙)
(11)
(12)
여기서 $k$는 파수(波數, wavenumber), $\phi$는 전기 스칼라 포텐셜(electric scalar potential), $\bar A$는 자기 벡터 포텐셜(magnetic vector potential)이다. 파수는 아래와 같이 정의한다.
(13)
식 (11)과 (12) 같은 형태로 표현되는 미분 방정식
(differential equation)은
헬름홀츠 방정식(Helmholtz equation)이라 부른다.
파동 방정식의 특성으로 인해 파동의 속도 $v$는
유전율(誘電率, permittivity)과
투자율(透磁率, permeability)에만 관계된다.
(14)
여기서 $f$는
주파수(周波數, frequency), $\lambda$은 파장
(波長, wavelength)이다.
파장은 [그림 2]를 보면 쉽게 이해할 수 있다. 만약 우리가 전자파가 움직이는 모양을 사진으로 찍을 수 있다면 마치 [그림 2]처럼 정지되어 보일 것이다. 이때 동일한 모양이 반복되는 공간적인 간격을 파장이라 부른다. 쉽게 생각해 시간의 주기(temporal period)를 흔히 $T$[= $1/f$]라 정하기처럼 공간의 주기(spacial period)를 파장이라 한다고 이해하면 된다. 또한, 주파수와 파장의 개념을 이해하면 주파수 $\times$ 파장 = 속도가 되는 관계도 쉽게 보일 수 있다. 주파수는 1초 동안 동일한 행동이 반복되는 회수이며 파장은 이 동일한 행동이 발생할 때 움직인 거리이므로 이를 종합하면 1초 동안 파동이 움직인 거리가 된다. 이 비율은 당연히 속도(velocity)이다. 파수는 이해가 다소 어렵다. 파수의 단위는 rad/m이므로 이를 통해 파수 개념을 이해할 수 있다. 즉, 1 m 거리 안에 존재하는 파동의 위상수가 파수이다. 쉽게 생각하면 파수는 1 m 안에 파동이 몇 개 있는가를 표현한다. 만약 1 m에 위상수가 $2\pi$[= $360^\circ$]이면, 1 m 범위에 파동이 1개 있다.
[그림 3] 파면의 개념(출처: wikipedia.org)
[그림 4] 파동의 움직임(출처: wikipedia.org)
방정식을 쉽게 생각하기 위해 식 (11)과 (12)에서 전하 밀도
(electric charge density)와 전류 밀도
(electric current density)는 0이라 생각하자. 이런 방정식은 원천이 없는 파동 방정식
(sourceless wave equation)이라 한다. 이 경우
파동 방정식의 답은 무엇인가? 먼저
라플라시안(Laplacian)을 생각하자.
(15)
그러면
파동 함수(wave function) $f$는 아래로 가정할 수 있다.
(16)
식 (15)와 (16)을 원천이 없는 파동 방정식에 대입하면
다음 관계를 만족해야 한다.
(17)
식 (17)과 같이 파수와 각주파수가 이루는 관계는 분산 관계(分散關係, dispersion relation)라 한다. 물론 분산 관계의 원래 의미는 파동이 진행할 때 파동이 퍼지는[혹은 분산되는] 특성을 의미한다. 파동의 분산을 더 이론적으로 파고들려면, 주파수에 따라 파수가 변하는 관계를 알아야 한다. 그래서 파수와 주파수의 관계를 간단히 분산 관계라 할 수 있다.
[그림 3]의
빨간색 사각형이 표현하는 파면
(波面, wavefront)에
기준값 개념을 적용하면 식 (16)으로 표현된 파동의 진행 방향
[그림 3의 검정색 화살표]을 예측할 수 있다. 쉽게 이해하기 위해 [그림 4]를 보라. 어떻게 파동이 왼쪽에서 오른쪽으로 움직임을 인지할 수 있을까? 왜냐하면 우리가 눈으로 파면
[예를 들면 꼭대기나 골짜기 등]을 추적해서 움직임을 이해하기 때문이다. 예를 들어 파면 위상의 기준값을 $0$이라 하면 $t$ = $0$일 때 $\Phi$ = $k_x x_0 + k_y y_0 + k_z z_0$ = $0$을 만족해야 한다. 이 관계를 벡터적으로 쓰면 $\bar k \cdot \bar r_0$ = $0$이 된다. 여기서 $\bar k$는
파수 벡터(wavenumber vector: 전자파가 진행하는 위상을 표현하는 벡터)이며 기준 위치 벡터는 $\bar r_0$ = $(x_0, y_0, z_0)$로 쓴다. 기준 위치 벡터는 파면 혹은 동위상 표면에 있는 임의의 점이다. 바로 얻어지는 결과중 하나를 보면
내적(inner product) 정의에 의해 파수 벡터 $\bar k$는 기준 위치 벡터 $\bar r_0$에 항상 수직이다. 3차원 공간 관점으로 보면 파수 벡터 $\bar k$는 평면의 법선 벡터가 되고 기준 위치 벡터는 평면
[여기서는 파면]에 놓여 있는 임의의 점이 된다. 즉, 파수 벡터는 동위상 표면인 파면에 항상 수직이다. 다음으로 $t = \Delta t$가 되면 기준값 0을 만족하기 위해 $k_x x_1 + k_y y_1 + k_z z_1$ = $\omega \Delta t$가 되어야 한다.
(18)
여기서 $\bar r_1$ = $(x_1, y_1, z_1)$는 시간이 $t$ = $\Delta t$ 만큼 흐른 후 형성되는 평면을 표현하는 위치 벡터이다. 식 (18)에서 좌변이 $0$보다 크려면 새롭게 위치 벡터의 차이인 $\Delta \bar r$ = $\bar r_1 - \bar r_0$가 벡터 $\bar k$ 방향으로 형성되어야 한다.
[∵ 내적(inner product)의 특성을 생각하라.] 이를 수식으로 표현하면 $\bar r_1$ = $\bar r_0 + \Delta \bar r$이 된다. 즉, $\bar r_1$ = $(x_1, y_1, z_1)$은 $\bar r_0$ = $(x_0, y_0, z_0)$로부터 $\bar k$ = $(k_x, k_y, k_z)$ 방향으로 $|\Delta \bar r|$ = $\omega \Delta t / k$ = $v \Delta t$ 만큼 진행한 형태가 된다. 이 개념이 헷갈리면
3차원 공간의 평면 방정식을 다시 고민해 보라. 좀더 쉬운 이해를 위해 예를 하나 들자. $\bar k$가 $z$방향인 경우 $\bar r_0$ = $(x, y, 0)$이 되어 $x$-$y$ 평면에 있는 임의의 점이 된다. 시간이 $\Delta t$ 만큼 지나면 $\Delta \bar r$ = $(0, 0, \Delta z)$가 되어 $t$ = $\Delta t$에서 $\Phi = 0$ 파면은 $\bar r_1$ = $(x, y, \Delta z)$ 위치에 있다. 이 $\bar r_1$ 위치를 $\bar r_0$ = $(x, y, 0)$과 비교하면 $z$ = $0$ 평면이 이동하여 $z$ = $\Delta z$ 평면이 됨과 동일하다. 이런 특성으로 인해 파동은 벡터 $\bar k$ 방향으로 분명히 진행한다. 그래서, 전자파의 공간적 진행을 연구하는 사람들은 $\exp(-i\omega t)$ 시간 약속을 주로 사용한다.