2022년 6월 11일 토요일

시컨트 수와 오일러 수(Secant Number and Euler Number)

[경고] 아래 글을 읽지 않고 "시컨트 수와 오일러 수"를 보면 바보로 느껴질 수 있습니다.


[표 1] 짝수번 시컨트 수의 실제값, S2m
시컨트 수, S2m시컨트 수의 자연수값
S01
S21
S45
S661
S81385
S1050521
S122702765
S14199360981
S2m
생성 함수

탄젠트 함수(tangent function) tanx테일러 급수(Taylor series)를 쉽게 공식화하기 위해 탄젠트 수(tangent number) Tm을 도입한 방식처럼 시컨트 함수(secant function) secx를 위한 테일러 급수에는 시컨트 수(secant number)를 도입한다. 시컨트 수 Smsecx를 구성하는 무한 급수(infinite series)의 항과 연결지어 정의한다.

                  (1)

시컨트 함수는 우함수(even function)이므로 식 (1)의 첨자를 짝수로 간략화한다. 시컨트 수의 구체적인 예는 [표 1]에 있다[1].

                  (2)

여기서 S2m+1 = 0이다. 식 (2)와 같이 멱급수의 계수에 모든 시컨트 수가 나오므로, 시컨트 함수는 시컨트 수의 생성 함수(generating function)이다. 시컨트 함수를 직접 고계 미분해서 시컨트 수 S2m을 얻을 수도 있지만, 고계 미분 과정이 너무 복잡해진다. 그래서 시컨트 수는 주로 재귀 관계(recurrence relation)를 이용해서 구한다. 이 재귀 관계를 유도하기 위해 코사인과 시컨트 함수의 테일러 급수를 사용한다.

                  (3)

여기서 (2m2k)은 조합(combination)이다. 식 (3)의 셋째식을 얻기 위해 대각선 따라 모으기에 해당하는 코쉬 곱(Cauchy product)에 대한 메르텐스의 정리(Mertens' theorem)를 적용한다. 식 (3)으로부터 시컨트 수의 항등식을 하나 만든다.

                  (4)

여기서 δm0은 크로네커 델타(Kronecker delta)이다. 최종적으로 시컨트 수를 생성하는 공식이 나온다.

                  (5)

여기서 S0 = 1이다. 식 (5)와 같은 재귀 관계를 쓰지 않고 탄젠트 수로부터 시컨트 수를 도출할 수도 있다. 먼저 식 (6)에 보인 탄젠트 함수와 시컨트 함수의 관계식에 각 테일러 급수를 대입해서 정리한다.

                       (6)

             (7)

식 (7)의 마지막식에서 탄젠트 수로 표현한 시컨트 수를 증명한다.

                       (8)

관점을 약간 바꾸어서 시컨트 수에 기반을 두고 탄젠트 수를 재정의한다.

                       (9)

                       (10)

식 (10)은 식 (5)와 매우 유사하므로, 시컨트 수와 탄젠트 수는 서로 밀접히 연결되어 있다. 시컨트와 탄젠트 함수의 미분을 사용하면, 시컨트 수와 탄젠트 수의 색다른 관계를 추가적으로 유도할 수 있다. 먼저 시컨트 함수의 미분을 두 함수의 테일러 급수로 교체해서 두 수 사이의 관계식을 구한다.

                       (11)

                       (12)

비슷한 방식을 탄젠트 함수의 미분에 사용해서 탄젠트 수를 시컨트 수로 표현한다.

                       (13)

                       (14)

수열 입장에서 시컨트 수가 가진 재미있는 특성을 탄젠트 수와 연관지어 소개한다.

[시컨트 수의 성질]
(a) 시컨트 수는 자연수열(自然數列, sequence of natural numbers)이다.
(b) 홀수번 시컨트 수 S2m+1은 항상 0이다.
(c) 짝수번 시컨트 수는 S2m1이고, m1보다 커지면 S2m도 같이 커진다. 즉, m>1에서 S2m>(2m1)S2(m1)을 항상 만족한다.
(d) 모든 m2에 대해, T2m1<S2m<T2m+1이 성립한다.

[명제 (a)의 증명]
식 (5)는 이전 시컨트 수와 조합의 곱이므로, 모든 시컨트 수는 자연수열이다.

[명제 (b)의 증명]
시컨트 수는 우함수인 시컨트 함수의 테일러 급수를 구성하므로, 홀수번 시컨트 수는 항상 0이다.

[명제 (c)의 증명]
식 (12)에서 k = m1인 경우만 보면, m>1에서 항상 S2m>(2m1)S2(m1)이다.

[명제 (d)의 증명]
식 (12)에 k = 0을 대입해서 S2m>T2m1을 증명한다. 또한 식 (14)에 따라 T2m+1>S2m도 만족한다.
______________________________

위에서 증명한 시컨트 수의 성질을 이용해 탄젠트 수의 속성도 도출할 수 있다.

[탄젠트 수의 성질]
(a) 탄젠트 수는 자연수열(自然數列, sequence of natural numbers)이다.
(b) 짝수번 탄젠트 수 T2m은 항상 0이다.
(c) 홀수번 탄젠트 수는 T2m+11이고, m이 커지면 T2m+1도 함께 커진다.
(d) 모든 m1에 대해, S2m<T2m+1<S2m+2이 성립한다.

[명제 (a)의 증명]
탄젠트 수는 식 (14)처럼 자연수열인 시컨트 수의 곱셈으로 계산하므로, 계산 결과인 탄젠트 수도 자연수열이 된다.

[명제 (b)의 증명]
시컨트 수와 상보적으로 탄젠트 수는 기함수인 탄젠트 함수를 구성해서 짝수번 탄젠트 수가 0이 된다.

[명제 (c), (d)의 증명]
시컨트 수와 탄젠트 수의 대소 관계인 T2m1<S2m<T2m+1을 활용한다.
______________________________

시컨트와 탄젠트 함수의 테일러 급수 전개를 더하면 재미있는 새로운 무한 급수가 만들어진다.

                       (15)

식 (15)의 우변이 생성하는 항은 짝수와 홀수 차수가 분명히 구별되므로 하나의 무한 급수로 만들 수 있다.

                       (16)

여기서 마지막식에 등장하는 관계식은 삼각 함수 항등식으로 증명한다. 수열 Amm에 따라 시컨트 수와 탄젠트 수를 왔다갔다하기 때문에  지그재그 수(zigzag number) 혹은 위아래 수(up/down number)라 부른다. 지그재그 수에 빗대어서 스컨트 수와 탄젠트 수를 각각 지그 수(zig number)재그 수(zag number)로 나누어서 명명하기도 한다.
식 (2)에 나온 시컨트 함수 secx의 입력 변수에 순허수 ix를 대입해서 쌍곡 시컨트 함수(hyperbolic secant function) sechx를 정의할 수 있다.

                       (17)

오일러 수(Euler number)로 정의하는 수열 E2m를 도입해서 쌍곡 시컨트 함수의 항을 E2m으로 간략화하기도 한다.

                       (18)

여기서 E2m = (1)mS2m이다. 그러면 쌍곡 시컨트 함수는 오일러 수의 생성 함수가 된다. 오일러 수는 부호가 바뀌기 때문에 자연수열인 S2m과 다르게 정수열(整數列, integer sequence)이 된다. 또한 오일러 수 E2m오일러의 수(Euler's number) 혹은 네이피어의 상수라 칭하는 e와 꼭 구별되어야 한다.

[참고문헌]
[1] N. J. A. Sloane, "A000364: Euler (or secant or "zig") numbers," The On-Line Encyclopedia of Integer Sequences. (방문일 2022-06-11)
 
[다음 읽을거리]

댓글 없음 :

댓글 쓰기

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.