1. 페이저를 이용한 임피던스 정의
2. 전송선 이론
3. 전자기파에 대한 유일성 정리
회로 이론(circuit theory)이나 전송선 이론(transmission line theory)으로 문제를 풀 때 한 가지 걱정되는 부분은 유일성(uniqueness)이다. 우리가 얻은 전압이나 전류는 푸는 방법에 관계없이 단 한 가지인가? 다행히 회로 이론과 전송선 이론을 포함하는 맥스웰 방정식(Maxwell's equations)에 대한 유일성 정리(uniqueness theorem)가 증명되었기 때문에 어렵지 않게 회로 이론 전압해와 전류해의 유일성을 증명할 수 있다. 전자기파에 대한 유일성 정리가 성립하려면 전기장(electric field)과 자기장(magnetic field)의 접선 방향 경계 조건(boundary conditions)이 유일하게 정해져야 한다.
[그림 1] 전기장의 연속 조건
전기장의 접선 방향 성분이 연속이라는 조건을 전압(voltage) 관점에서 생각해보자. 이 경계 조건은 [그림 1]을 이용해 생각할 수 있다. 즉, 영역 (I)과 (II)에서 경계면에 접하는 전기장의 접선 성분[노란색 화살표]은 반드시 같아야[연속이어야] 한다. 이 개념을 식 (1)에 제시한 전압 개념에 넣어보자.
(1)
전기장[$\bar E_1 = \bar E_2$]이 같기 때문에 식 (1)에 의해 발생하는 전압[$V_1 = V_2$]도 반드시 같아야 한다. 즉, 경계면에서 전기장이 연속이라는 말은 경계면에 걸리는 전압이 같아야 한다는 조건과 동일하다. 이 개념이 바로 KVL(Kirchhoff Voltage Law)이 된다.
[그림 2] 자기장의 경계 조건
다음으로 [그림 2]를 이용해 자기장의 접선 방향 연속성을 전류(current) 관점에서 알아보자. 자기장의 연속성에 의해 영역 (I)과 (II)의 경계면에 존재하는 자기장[노란색 화살표]은 서로 같아야 한다. 각 영역의 자기장[$\bar H_1 = \bar H_2$]이 같다면 식 (2)의 암페어 법칙에 의해 경계면을 통과하는 전류[$I_1 = I_2$]가 서로 같아야 한다.
(2: 변위전류 포함 암페어의 법칙)
즉, 경계면에서 자기장이 연속이라는 말은 경계면을 통과하는 전류가 같아야 한다는 조건과 동일하다. 이 개념이 바로 KCL(Kirchhoff Current Law)이 된다.
이상을 종합하면 KVL과 KCL의 중요성을 인식할 수 있다. 회로 이론 문제를 풀 때 KVL과 KCL을 연속해서 적용하면 항상 전압해와 전류해를 유일하게 결정할 수 있다. 회로 이론과 전송선 미소 구간(微小區間, infinitesimal interval)의 모형화를 결합하면 전송선 방정식을 얻을 수 있다. 회로 이론의 극한이 전송선 이론이 된다고 생각할 수 있으므로 KVL과 KCL을 적용하면 전송선 이론의 답도 유일하게 얻을 수 있다.
안녕하세요 좋은 글 잘 보고 있습니다
답글삭제유일성 정리에 의해 어떤 폐곡면 상의 전압값이 결정되면 내부 전압값이 결정된다고 알고 있습니다
그렇다면 무한 평면상의 전압값이 결정되는 경우도 전압이 결정되나요??
무한평면을 폐곡면으로 취급해도 되나요?
네, 가능합니다, aaaf님.
삭제말씀하신 것처럼 유일성 정리는 유한한 폐곡면이 기준이고, 이 폐곡면을 무한대로 확장해서 무한 영역에 대한 유일성을 증명합니다. 다만 무한대로 확장한 표면적에서 적분값이 0으로 가야 합니다.