2010년 10월 8일 금요일

포텐셜(potential) 기반 파동 방정식(wave equation)



[경고] 아래 글을 읽지 않고 "포텐셜 기반 파동 방정식"을 보면 바보로 느껴질 수 있습니다.
1. 맥스웰 방정식
2. 전자기장 파동 방정식


1865년에 이미 전자기장에 대한 파동 방정식을 제안했던 맥스웰(James Clerk Maxwell)이 왜 다시 포텐셜 기반 파동 방정식을 유도했을까? (맥스웰 방정식과 관계된 정확한 날짜[2]: 논문 투고 - 1864년 10월 27일, 논문 공개 - 1864년 12월 8일, 논문 출판 - 1865년 1월)
전자기장 파동 방정식의 최종 표현식을 보면 이 질문에 대한 답을 할 수 있다.

                         (1)

                         (2)

전자기장 파동 방정식의 원천항(source term: 식 (1)과 (2)의 우변항)이 단순하게 표현되어 있지 않다. 이를 더 아름답게 표현하려면 스칼라 포텐셜(scalar potential: $\phi$)과 벡터 포텐셜(vector potential: $\bar A$)을 이용해야 한다[1].
전기장(electric field)과 스칼라 및 벡터 포텐셜 관계를 얻기 위해 아래의 맥스웰 방정식(Maxwell's equations)을 보자.

                       (3)

                                (4)

식 (4)와 발산(divergence) 연산자의 영인자(nullity)로부터 벡터 포텐 $\bar A$를 아래처럼 정의할 수 있다.

                                (5)

식 (5)를 식 (3)에 대입해서 정리하면

                                (6)

식 (6)에서 회전(curl) 연산자의 영인자를 이용하였다.
식 (6)을 이용하면 전기장을 스칼라 및 벡터 포텐셜로 표현할 수 있다.

                                (7)

DC($\partial / \partial t = 0$)인 경우 전기장($\bar E$)은 스칼라 포텐셜 혹은 전압($\phi$)으로만 표현된다. 또한, 식 (7)은 맥스웰 방정식 (3)과 (4)를 내포하고 있다.
식 (7)을 쿨롱의 법칙인 식 (8)에 대입하고 로렌츠 게이지(Lorenz gauge)인 식 (9)를 적용하면 식 (10)을 얻을 수 있다.

                                (8)

                                (9)

                                (10)

식 (10)을 정리하면 스칼라 포텐셜에 대한 파동 방정식을 얻는다.

                                (11)

DC($\partial / \partial t = 0$)인 경우 식 (11)은 푸아종 방정식(Poisson's equation)이 된다.
마지막으로 남은 맥스웰 방정식인 변위 전류(displacement current) 포함 암페어의 법칙 (12)에 식 (5)와 (7)을 대입하자.

                  (12)

그러면,

                  (13)

식 (13)에 로렌츠 게이지인 식 (9)를 다시 적용하면 벡터 포텐셜에 대한 파동 방정식을 얻는다.

                  (14)

최종적으로 식 (11)과 (14)를 보면 원천항(우변항)이 매우 간략해진 것을 알 수 있다. 또한, 전하 밀도(charge density, $\rho$)가 스칼라 포텐셜을 생성하고 전류 밀도(current density, $\bar J$)가 벡터 포텐셜을 생성한다는 것이 확연히 드러난다.

[참고문헌]
[1] J. C. MaxwellA Treatise on Electricity and Magnetismvol. 1 and vol. 2, 1873.
[2] G. Pelosi, "A tribute to James Clerk Maxwell on the 150th anniversary of his equations (1864-2014)," IEEE Antennas Propagat. Mag., vol. 56, no. 6, pp. 295-298, Dec. 2014.

[다음 읽을거리]
1. 페이저를 이용한 맥스웰 방정식
2. 대칭적인 맥스웰 방정식
3. 헤르츠 벡터 포텐셜

댓글 10개 :

  1. 전파거북이님 질문이 있습니다.^^
    제가 궁금한 것은 자속밀도B에 회전을 취하였을 때,
    식을 정리하게되면 A의 라플라시안-델(델발산A)가 나오고 식이 많이 나오지 않습니까?
    그때 A의 발산을 로렌츠게이지라고 부르고 A의 라플라시안을 파도방정식이라고 하는데 두식은 자속밀도 B의 회전을 정리하였을 때 나오는 식인데 왜 그것을 분리시켜서 한개는 로렌츠게이지 한개는 파동방정식이라고 부르나요?
    궁금합니다 ㅎ

    답글삭제
  2. 먼저 우리가 측정할 수 있는 것은 전기장이나 자기장(엄밀하게는 이들의 에너지)이라는 것을 기억할 필요가 있습니다.

    그래서, A의 회전(= 자속밀도)은 정확히 정의됩니다. 하지만 A의 발산은 임의입니다. 내 마음대로 정하면 됩니다. 그래서, 이것을 게이지라고 부릅니다. 우리말로 표현하려면 어떤 것을 재는(or 정의하는) 잣대로 생각하면 됩니다.
    좀더 자세한 내용은 아래를 보면 됩니다.
    http://ghebook.blogspot.com/2010/08/magnetic-field.html

    다음으로 A의 파동방정식을 유도하려면 자속밀도의 회전을 취해야하는데 식 (13)에서 보는 것처럼 A의 발산을 정해줘야합니다. 게이지를 잘못 정하면 방정식이 매우 지저분해집니다. 그래서 로렌츠 게이지를 쓰지요. 게이지는 어떤 의미에서는 방정식의 청소부입니다. 청소부 능력이 떨어지면 방정식이 매우 더러워집니다.

    파동방정식을 유도할 때 항상 로렌츠 게이지만 써야하는 것은 아닙니다. 구좌표계에서는 다른 게이지를 써야 방정식이 예뻐집니다.

    답글삭제
  3. 안녕하세요. 거북님의 글 항상 잘 보고 갑니다.
    현재 유체 역학 관련하여 석사 과정에 있는 학생입니다.
    한 가지 여쭙고 싶은것이 있는데, 퍼텐셜의 범주에서 교수님께서 그린 함수도 퍼텐셜의 일종이라고 설명을 하시고, 유동 함수(등 포텐셜선에 수직임)를 유도 하였습니다.
    이때 전제 조건이 그린 함수가 등 포텐셜이 되어야 할 것 같은데요,
    원래 그린함수가 등 포텐셜 선입니까?

    답글삭제
    답글
    1. 칭찬 감사합니다.

      비슷하지만 저는 의견이 약간 다릅니다.

      그린 함수는 점원천(point source)에 의한 미분방정식의 해입니다. 이 미분방정식(or 그린 함수가 표현하는 것)은 포텐셜일 수도 있고 힘일 수도 있습니다.
      즉, 내가 어떤 미분방정식을 풀고 있는 지가 중요합니다.
      http://ghebook.blogspot.kr/2011/10/greens-function-of-differential.html

      하지만 포텐셜은 힘을 직접 풀기 힘들어 도입한 양입니다. 보통 포텐셜의 변화를 힘으로 정의하고 포텐셜은 원천이 없는 지점에서 라플라스 방정식을 만족합니다. 원천이 있는 경우를 풀려면 그린 함수를 쓰는 것이 쉽습니다.

      삭제
  4. 식(6)에서 식(7)로 갈때,
    식(6)의 회전연산자만 제거 하고 식(7)로 가면, 식(7)의 구배항이 +가 되어야 할거 같은대요.

    식 (6)에서 회전연산자의 0인자가 구배이므로 구배가 +이던 -이던 어차피 0이니 상관이 없을 거 같긴 한데요. 이 부분에 대해서는 포텐셜을 무조건 - 로 해야 한다고 동영상 강의를 본거 같은데요. 그러나, 지금까지 거북이님의 자료를 보면 포텐셜에 - 항이 붙는 것은 원천점과 관측점중 어느 부분을 미분 하는야에 따라서 포텐셜 관련 부분이 - 가 되는 것을 자연스럽게 설명이 되었었는대요. 여기에서도 그러한 개념이 들어가 야 하는건가요?

    답글삭제
    답글
    1. 지적 감사합니다, 익명님. ^^ 정확하게 쓰는 게 좋을 것 같아 식 (6)을 바꾸었습니다.

      스칼라 포텐셜의 구배에 (-)를 붙인 것은 정의 때문에 그렇습니다. 전압이 높은 곳에서 낮은 곳으로 가는 방향이 전기장의 기준 방향입니다.

      삭제
  5. 항상 거북이님덕분에 공부 잘하고 있습니다.
    다름이 아니라 궁금증이 있어 질문하게되었습니다.
    멕스웰방정식을 이용하여 파동방정식을 유도할때 'source free'라고 가정하고 유도를 하는데
    왜 이렇게 하는지 알려주실수 있나요?? 우선 source free의 물리적 의미도 잘 모르겠구요.

    답글삭제
    답글
    1. 계속 열심히 하시면 좋은 성과 있을겁니다, 지성민님. ^^

      질문 하신 부분은 미분 방정식과 관계되어 있습니다. 우리가 답을 구하려면 미분 방정식을 풀어야 하는데요, 그 과정 중에 일반해와 특수해를 구분해서 구합니다. 아래 링크 참고하세요.

      http://ghebook.blogspot.kr/2011/10/ordinary-differential-equation.html

      미분 방정식에서 일반해라 부르는 것을 여기서는 무원천으로 정의합니다. 원천이 없다는 것은 전자파를 생성할 전원(전하나 전류)이 없다는 뜻입니다. 그래서, 무원천인 경우, 전자파는 반드시 내가 정의한 영역 외부에서 생성되어 전달됩니다.

      삭제
    2. 감사합니다.^^ 덕분에 좋은 지식 얻어갑니다.

      삭제

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.