2020년 9월 18일 금요일

사원수와 회전(Quaternion and Rotation)

[경고] 아래 글을 읽지 않고 "사원수와 회전"을 보면 바보로 느껴질 수 있습니다.


사원수(四元數, quaternion)는 물리학에 벡터(vector)란 개념을 선물해준 고마운 존재이다. 사원수가 아름답기 때문에 그동안 수많은 찬사를 받았지만, 사원수는 치명적인 약점이 존재한다. 우리 직관을 너무 벗어난 사원수의 대수적 특성은 사실 멀리하고 싶은 그리움이다. 우리만 이런 딜레마를 느낄까? 당연히 아니다. 사원수가 널리 퍼진 19세기말부터 대수 기반의 사원수가 아닌 직관적인 벡터 개념을 만들기 위한 경쟁이 시작되었다. 사원수에 벡터가 이미 포함되어 있었지만, 완벽한 사원수 대수를 버리고 어딘지 부실하게 벡터만 강조한 벡터 해석학(vector analysis)이 1881년기브스 42세, 조선 고종 시절에 출현했다[1], [2]. 벡터 해석학은 미국 최초의 공학 박사이자 예일대학교(Yale University) 교수인 기브스Josiah Willard Gibbs(1839–1903)가 만들었다. 사원수라는 엄밀한 수학 체계를 어려워하는 예일대 학생들을 위해 벡터 개념을 간단히 사용할 수 있도록 기브스 교수는 좌표계 기반 벡터에 대한 자체 교재를 만들어서 학생들을 가르쳤다. 좌표계 기반 벡터 교재는 영국에 있는 헤비사이드Oliver Heaviside(1850–1925)에게 1888년 무렵에 전달되었다. 깐깐한 헤비사이드가 기브스의 벡터 개념을 칭찬했지만, 헤비사이드는 이미 1884년헤비사이드 34세, 조선 고종 시절에 기브스와는 독립적으로 사원수로 기술된 맥스웰 방정식(Maxwell's equations)을 자신만의 벡터 기반 맥스웰 방정식으로 간략화했다. 그뒤 기브스는 너무 바빠서 새로운 벡터 개념을 다듬을 시간이 없었지만, 기브스의 제자인 윌슨이 벡터 해석학[3]이란 멋진 책을 써서 1901년에 출판했다. 이 교재로 인해 사원수라는 개념은 물리학자의 손을 떠나 원래 있어야 할 수학자에게 돌아갔다. 요즘 물리학자는 기브스와 헤비사이드가 제안한 좌표계 기반 벡터를 사용해서 사물의 움직임을 계산한다.

[그림 1] 회전축 $\hat e$에 대한 3차원 공간의 회전(출처: wikipedia.org)

[그림 2] 공간 회전의 사원수 표현식을 위한 3차원 좌표계(출처: wikipedia.org)

사원수는 수학자가 발견한 교환 법칙이 성립하지 않는 최초의 대수 체계라서 존재 가치가 분명히 있다. 하지만 사원수와 경쟁하는 벡터 개념이 너무 직관적이라서 사원수는 다수의 사랑을 다시 받기는 어렵다. 그럼에도 불구하고 3차원 회전 연산(rotation operation)만 보면, 사원수의 회전 표현식이 벡터나 행렬 공식보다 확실히 아름답다.

[3차원 공간 회전을 위한 사원수 표현식]
단위 벡터 $\hat k$를 회전축으로 놓고, 3차원 벡터 $\bar v$를 $\theta$만큼 회전시킨 벡터 $\bar v_\text{rot}$는 다음처럼 표현된다.

                  (1)

[증명]
사원수 표현식을 증명하기 위한 사원수의 벡터 항등식은 다음과 같다.

                              (2)

                              (3)

회전을 표현하기 위해 사용한 사원수 $\bf q$의 크기는 $\theta$에 관계없이 항상 $1$이다.

                              (4)

그래서 식 (1)처럼 ${\bf q}^{-1}$ = ${\bf q}^*$이 성립한다. 벡터 $\bar v_\text{rot}$의 크기도 $|{\bf q} \bar v{\bf q}^*|$ = $|{\bf q}| |\bar v| |{\bf q}^*|$ = $|\bar v|$처럼 보존된다. 사원수 $\bf q$를 식 (1)에 대입한 후, 식 (2)와 (3)을 이용해 정리한다.

                              (5)

여기서 삼각 함수의 합차 공식에 의해 $\cos^2 (\theta/2) - \sin^2 (\theta/2)$ = $\cos \theta$, $2 \sin^2 (\theta/2)$ = $1 - \cos \theta$이다. 식 (5)는 로드리그의 회전 공식(Rodrigues' rotation formula)과 동일하므로, 3차원 공간의 회전 표현식이 증명된다.
______________________________

공간 회전에 대한 사원수 표현식을 증명할 때, 로드리그의 회전 공식과 비교한 부분이 약간 어색해 보일 수 있다. 하지만 역사적으로 보면, 로드리그의 회전 공식이 나온 직후에 사원수가 제안되었으므로 우리의 접근 방식은 타당하다. 

[참고문헌]
[1] M. J. Crowe, "A history of vector analysis," University of Louisville, 2002. (방문일 2020-09-18)
[2] E. B. Wilson, "Reminiscences of Gibbs by a student and colleague," Bull. Amer. Math. Soc., vol. 37, no. 6, pp. 401–416, 1931.

댓글 5개 :

  1. 궁금한게 있습니다... (5)에서 마지막 전에 -sin^2(θ/2)[v-2(k·v)k] 에서 [v - 2(k·v)k] 가 어떻게 (k·v)k 로 전개됬는지 잘 모르겠습니다... 그리고 기초적인 질문인데; cos^2와 sin^2이 cos과 +(1-cos)이 된 이유가 궁금합니다. 저는 -(1-cos)을 생각했습니다. 도와주십쇼 선생님ㅜㅜ

    답글삭제
    답글
    1. 그리고 cos^2 sin^2의 제곱이 사라진 이유도 잘 모르겠습니다...ㅜㅜ;;

      삭제
    2. Unknown님, 선생님은 아닙니다.
      식 (5) 밑에 내용을 약간 추가했어요. 삼각 함수 합차 공식을 고려하면 증명됩니다.

      삭제
    3. 정말 감사합니다!! 책을 봐도 다른 인터넷 블로그를 봐도 이만큼 따라갈수있는 글이 없었어요... 복받으십쇼 감사합니다!!!! 공부열심히할게요!!!!!!!!

      삭제

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.