2020년 8월 3일 월요일

에르미트 행렬과 유니터리 행렬(Hermitian Matrix and Unitary Matrix)

[경고] 아래 글을 읽지 않고 "에르미트 행렬과 유니터리 행렬"을 보면 바보로 느껴질 수 있습니다.


행렬 $\bf A$에 대한 에르미트 행렬(Hermitian matrix)은 다음처럼 정의한다.

                       (1)

여기서 행렬의 원소는 일반적으로 복소수(complex number)이다. 식 (1)에 등장하는 ${\bf A}^H$는 $\bf A$의 켤레 전치 행렬(conjugate transpose)이다.

                       (2)

여기서 $(\cdot)^*$는 켤레 복소수(complex conjugate), $(\cdot)^T$는 전치 행렬(transpose)이다. 식 (1)의 정의에 의해, 에르미트 행렬의 대각선 원소는 항상 실수이다. 켤레 전치 행렬은 ${\bf A}^\dagger$처럼 표기할 수도 있다. 또한 켤레 전치 행렬 ${\bf A}^H$는 복소 행렬(complex matrix)을 위해 사용하는 개념이다. 복소 행렬이 아닌 실수 행렬을 고려한다면, 켤레 전치 행렬은 단순한 전치 행렬이 된다. 따라서 복소 영역의 에르미트 행렬은 실수 영역에서 대칭 행렬(symmetric matrix)이 된다. 식 (1)과 비슷하지만 다음과 같은 반대칭(反對稱, skew-symmetry) 특성을 가진 행렬은 반에르미트 행렬(skew-Hermitian matrix)이라 한다.

                       (3)

식 (3)에 의해 반에르미트 행렬의 대각선 원소는 $0$ 혹은 순허수가 된다. 에르미트 행렬과 반에르미트 행렬을 합치면 어떤 복소 행렬이든지 표현할 수 있다. 다른 말로 하면, 임의의 복소 행렬 $\bf A$를 다음처럼 에르미트 행렬과 반에르미트 행렬의 합으로 항상 분해할 수 있다.

                       (4)

식 (4)와 같은 복소 행렬의 관계는 실수 행렬에서 성립하는 대칭(symmetric)과 반대칭(skew-symmetric) 행렬의 합 특성과도 동일하다. 예를 들어 식 (4)에 있는 $\bf A$가 실수 행렬이 되면, 에르미트와 반에르미트 행렬은 대칭과 반대칭 행렬이 된다. 그러면 대칭 행렬의 특성처럼 이 두 행렬의 합은 원래 행렬 $\bf A$가 된다.
여러 행렬 중에서 제일 유명한 행렬이 에르미트 행렬이지만, 식 (1)의 정의는 다소 밋밋하다. 소문난 잔치에 먹을 것이 없는 상황일까? 아니다. 에르미트 행렬은 고유치(eigenvalue)고유 벡터(eigenvector)를 만날 때 빛이 난다.

[에르미트 행렬과 고유치의 관계]
에르미트 행렬의 고유치는 실수이다.

[증명]
행렬 $\bf A$의 고유치 $\lambda$와 고유 벡터 $\bf x$는 다음처럼 표현한다.

                       (5)

식 (5)의 양변에 ${\bf x}^H$를 곱해서 정리하면 다음을 얻는다.

                       (6)

여기서 ${\bf x}^H {\bf x}$는 복소 영역의 내적(inner product)이다. 식 (6)에 의해 $\lambda$ = $\lambda^*$이므로, $\lambda$는 실수가 되어야 한다.
______________________________

식 (6)의 결과를 2차 형식(quadratic form) 관점으로 보면, ${\bf x}^H {\bf Ax}$는 항상 실수이다.

[에르미트 행렬과 고유 벡터의 관계]
서로 다른 고유치를 가진 에르미트 행렬의 고유 벡터는 서로 직교한다.

[증명]
고유치 $\lambda_1, \lambda_2$에 해당하는 고유 벡터를 ${\bf x}_1, {\bf x}_2$라 하면, 식 (6)과 비슷하게 다음 관계식을 만들 수 있다.

                       (7)

식 (7)에서 두 고유치는 다르기 때문에, ${\bf x}_1, {\bf x}_2$는 직교한다.
______________________________

이상의 결과를 종합하면, 에르미트 행렬은 복소 영역으로 일반화한 대칭 행렬(symmetric matrix)이다. 그래서 실수가 원소인 대칭 행렬로 만든 여러 결과에서 대칭 행렬을 에르미트 행렬로 바꾸면, 복소 영역에서 그 결과가 그대로 성립한다. 직교 행렬(orthogonal matrix)에도 동일한 개념을 적용할 수 있다. 실수에서 정의한 벡터의 내적 ${\bf x}^T {\bf y}$를 복소수로 확장하면 ${\bf x}^H {\bf y}$가 된다. 복소 영역의 직교 개념 ${\bf x}^T {\bf y}$ = $0$을 활용하여 행렬을 구성하는 열 벡터를 복소 영역에서 직교시키면, 직교 행렬은 다음과 같은 유니터리 행렬(unitary matrix)이 된다.

                       (8)

여기서 열 벡터는 다음에 표시한 정규 직교 관계가 성립한다.

                       (9)

유니터리 행렬은 단일 행렬로 번역할 수도 있다.[단일 행렬은 잘 쓰지 않는 표현이다. 이해를 위해 강제로 번역했을 뿐이다.] 유니터리 행렬을 구성하는 열 벡터는 복소 영역에서 정규 직교 기저를 이루어서 $n$차원 공간을 계량하는 하나의 단위계로 사용할 수 있다. 그래서 단일화된 혹은 일관된 단위(unit)를 뜻하는 유니터리(unitary)를 도입해서 식 (8)과 같은 행렬의 명칭을 정한다.
에르미트 행렬의 고유치와 고유 벡터가 가진 특성은 기시감이 든다. 이는 정확한 느낌이다. 행렬의 고유치와 고유 벡터는 스투름–리우빌 이론(Sturm–Liouville theory)에서 봤던 미분 방정식의 고유치와 고유 함수(eigenfunction)와 무척 닮아있다. 수학 분야에서 행렬과 미분 방정식은 굉장히 다른 이론처럼 보이지만, 고유 벡터라는 색안경으로 보면 두 이론은 매우 밀접하게 연결되어 있다. 행렬과 미분 방정식의 연계성은 선형 최소 제곱법(linear least squares)에서도 볼 수 있다.

[다음 읽을거리]

댓글 없음 :

댓글 쓰기

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.