2024년 6월 8일 토요일

동반 행렬(Companion Matrix)

[경고] 아래 글을 읽지 않고 "동반 행렬"을 보면 바보로 느껴질 수 있습니다.


단일 다항식(monic polynomial: 최고차 항의 계수가 1인 다항식) $p(x)$의 계수를 마지막 열에 넣어서 만든 행렬 ${\bf K}(p)$는 $p(x)$와 함께 가는 행렬이란 의미로 동반 행렬(companion matrix)이라 부른다.

                          (1)

여기서 $c_i$는 $p(x)$의 계수이다. 다만 다항식과 행렬은 너무 다른 개념이라서, 어떤 측면에서 이 두 대상이 동반자 관계일까? 답은 고유치(eigenvalue)를 만드는 행렬식(determinant)에 있다.

[동반 행렬의 특성 다항식(characteristic polynomial)]

                          (2)

[증명]
동반 행렬의 행렬식 정의로 특성 다항식을 계산한다.

             (3)

여기서 $|{\bf A}|_{ij}$는 $i$행과 $j$열을 초과하는 원소를 모아서 정의한 행렬식이다.
______________________________

임의의 행렬 $\bf A$에 대해, $|x {\bf I} - {\bf K}(p) |$로 특성 다항식 $p(x)$를 만든다. 그러면 식 (1)을 이용해 $\bf A$의 동반 행렬로 ${\bf K}(p)$를 항상 생성할 수 있다. 동반 행렬과 $\bf A$는 동일한 특성 다항식 $p(x)$로 연결되어서 두 행렬의 고유치는 같다. 여기서 특성 다항식의 정의에 따라 $p(x)$의 근이 고유치이다.
또한 동반 행렬의 중요한 성질 중 하나는 닮음 변환(similarity transformation)의 불변성이다. 즉, 행렬 $A$와 닮은 행렬(similar matrix) $\bf B$ = ${\bf P}^{-1} {\bf A P}$는 $A$와 동일한 동반 행렬 및 특성 다항식을 가진다.

[닮은 행렬의 동반 행렬과 특성 다항식]

                          (4)

여기서 $\bf B$ = ${\bf P}^{-1} {\bf A P}$이다.

[증명]
닮은 행렬의 특성 다항식이 같아서, 이 다항식으로 만든 동반 행렬 ${\bf K}(p)$도 같아진다.
______________________________

행렬 $\bf A$의 동반 행렬을 구하기 어려운 경우, 식 (4)를 써서 상대적으로 계산이 쉬운 $\bf B$로 동반 행렬을 구하기도 한다. 


   1. 기본(basics)   

[기본 관계식]

                          (1.1)

여기서 첫째식의 첨자(index)는 $i$ = $1, 2, \cdots, n-1$; ${\bf e}_i$는 $i$번 표준 기저(standard basis)인 열 벡터[예를 들어, ${\bf e}_1$ = $[1~0~0~\cdots~0]^T$], $n$은 정방 행렬의 크기이다.

[증명]
동반 행렬과 표준 기저의 단순한 행렬 곱이므로, 좌변을 계산해서 우변과 비교한다.
______________________________

식 (1.1)의 첫째식은 식 (1)에 정의한 동반 행렬의 대각선 원소의 아래에 위치한 1의 의미를 표현한다. 이 값으로 인해 동반 행렬에 표준 기저를 곱하면, 그 다음 표준 기저가 차례로 얻어진다.


[다음 읽을거리]

댓글 없음 :

댓글 쓰기

욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.