[경고] 아래 글을 읽지 않고 "원통 좌표계의 MNL 함수"를 보면 바보로 느껴질 수 있습니다.
1. 원통 좌표계의 전자장 표현식
2. MNL 함수를 이용한 전자장 표현식
3. 데카르트 좌표계의 MNL 함수
(1)
(2)
(3)
2. MNL 함수를 이용한 전자장 표현식
3. 데카르트 좌표계의 MNL 함수
데카르트 좌표계의 MNL 함수 유도와 유사하게 기계적인 방법으로 원통 좌표계의 MNL 함수를 만들 수 있다. 먼저 다음의 일반적인 MNL 함수 정의식을 고려하자.
(1)
(2)
식 (1)과 (2)에서 MNL 함수의 생성 함수(generating function) $\psi$는 아래 식을 만족한다.
(3)
식 (2)에 있는 안내 벡터(piloting vector) $\bar p$는 다음 관계가 성립해야 한다.
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
[다음 읽을거리]
1. 구 좌표계의 MNL 함수
원통 좌표계는 데카르트 좌표계의 $z$방향을 공유하고 있으므로 안내 벡터는 $\bar p = \hat z$라 생각하자. 그러면 데카르트 좌표계와 비슷하게 식 (1)은 원통 좌표계에서 다음처럼 표현된다.
(6)
그러면 마지막으로 우리가 해야 할 일은 식 (3)의 생성 함수 $\psi$를 정하는 일이다. 이 과정 자체는 무척 번거로운 과정이지만 이미 다음처럼 원통 좌표계에서 전자장 표현식을 얻었기 때문에 어렵지 않다.
(7)
여기서 $Z_n(\cdot)$는 $n$차 베셀 함수 혹은 한켈 함수이다.
만약 자유 공간을 통해 전파하는 전자파를 원통 좌표계에서 표현한다면 식 (7)은 다음처럼 표현할 수 있다.
(8)
식 (8)을 식 (5)와 (6)에 넣고 정리하면 다음과 같다.
(10)
자유 공간의 경계 조건(boundary condition)은 복사 조건(radiation condition) 밖에는 없으므로 식 (9)와 (10)은 전기장(electric field)이나 자기장(magnetic field)을 마음대로 표현할 수 있다. 따라서 임의의 전기장과 자기장은 원통 좌표계 함수의 완비성(completeness of function in circular cylindrical coordinates)을 이용해 다음과 같이 표현된다.
(11)
여기서 $A_n (\zeta)$, $B_n (\zeta)$는 각각 $z$방향에 대한 TE(Transverse Electric)와 TM(Transverse Magnetic) 모드(mode)의 계수이다. 식 (2)에 있는 $\bar L$ 함수는 자유 공간에서는 의미가 없다. 이를 확인하기 위해 $\bar L$ 함수에 발산(divergence)을 취해보자.
(12)
즉, 생성 함수 $\psi$는 0이 아니기 때문에 $\bar L$ 함수의 발산도 0이 아니다. $\bar L$이 식 (11)처럼 전기장이나 자기장을 표현한다면 전하(electric charge)나 자하(magnetic charge)가 없는 전기장과 자기장의 발산은 반드시 0이 되어야 하므로 $\bar L$은 자유 공간의 전자장 표현식에 사용되면 안된다.
[다음 읽을거리]
1. 구 좌표계의 MNL 함수
댓글 없음 :
댓글 쓰기
욕설이나 스팸글은 삭제될 수 있습니다. [전파거북이]는 선플운동의 아름다운 인터넷을 지지합니다.